K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

\(C=-x^2-3x+4\)

\(\Rightarrow C=-\left(x^2+3x\right)+4\)

\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}\right)+4\)

\(\Rightarrow C=-\left(x^2+3x+\dfrac{9}{4}\right)+4+\dfrac{9}{4}\)

\(\Rightarrow C=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\left(-\left(x+\dfrac{3}{2}\right)^2\le0,\forall x\right)\)

\(\Rightarrow Max\left(C\right)=\dfrac{25}{4}\left(tạix=-\dfrac{3}{2}\right)\)

11 tháng 8 2023

MAXC = 25/4 khi x =-3/2

\(A=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)

\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)

Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

15 tháng 7 2016

\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

MIN B = 7/8 <=> x=3/4

16 tháng 9 2019

\(x^2-3x-3y+2xy+2y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2-9\left(x+y+3\right)+y^2+14=0\)

\(\Leftrightarrow P^2-9P+y^2+14=0\)

Ta có: \(0=P^2-9P+y^2+14\ge P^2-9P+14=\left(P-7\right)\left(P-2\right)\)

\(\Leftrightarrow2\le P\le7\)

Vậy...

P/s: Về cơ bản hướng làm là thế, nhưng khi tính toán + biến đổi có thể sai, bạn tự check lại.

16 tháng 9 2019

Dòng kế cuối là:\(\Rightarrow2\le P\le7\) nha!

17 tháng 7 2021

12 tháng 7 2017

\(C=\left(23-x\right)\left(3x+5\right)+13\)

\(=69x+115-3x^2-5x+13\)

\(=-3x^2+64x+128\)

\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)

\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)

Vậy \(Max_C=\dfrac{1408}{3}\)

Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)

d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)

\(=6x+10-9x^2-15x-7\)

\(=-9x^2-9x+3\)

\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)

\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)

Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

12 tháng 7 2017

undefined