Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(I=x^4-6x^3+11x^2-12x+20\)
\(=x^4-6x^3+9x^2+2x^2-12x+18+2\)
\(=\left(x^4-6x^3+9x^2\right)+\left(2x^2-12x+18\right)+2\)
\(=\left[\left(x^2\right)^2-2.x^2.3x+\left(3x\right)^2\right]+2\left(x^2-6x+9\right)+2\)
\(=\left(x^2-3x\right)^2+2\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2-3x=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0;x=3\\x=3\end{cases}\Leftrightarrow}\hept{x=3}}\)
Vậy GTNN của I = 2 khi x = 3
\(A=x^4-6x^3+10x^2-6x+9\)
\(=x^4-6x^3+9x^2+x^2-6x+9\)
\(=\left(x^4-6x^3+9x^2\right)+\left(x^2-6x+9\right)\)
\(=\left(x^2-3x\right)^2+\left(x-3\right)^2\ge0\forall x\)
Dấu "=" xảy ra khi x = 3 (giống ý trên)
Vậy GTNN của A = 0 khi x = 3
(2x2+x-6)+3(2x2+x-3)-9=0
\(\Leftrightarrow\) 2x2 + x - 6 + 6x2 + 3x - 9 - 9 = 0
\(\Leftrightarrow\)2x2 + 6x2 + 3x + x = 6 + 9 + 9
\(\Leftrightarrow\)8x2 + 4x = 24
\(\Leftrightarrow\)8x2 + 4x - 24 = 0
\(\Leftrightarrow\)(x+2)(8x-12) = 0
\(\Leftrightarrow\)x + 2 = 0 hoặc 8x - 12 = 0
1) x + 2 = 0 \(\Leftrightarrow\)x = -2
2)8x - 12 = 0 \(\Leftrightarrow\)8x = 12 \(\Leftrightarrow\)x = \(\frac{12}{8}\)
Vậy Tập nghiệm của phương trình đã cho là S ={ -2 ; \(\frac{12}{8}\)}
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)
\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)
\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)
\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)
\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)
\(=\frac{2x+1}{x-3}\)
b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)
thay \(x=-\frac{3}{2}\) vào P tâ đc: \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)
c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)
\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)
\(\Leftrightarrow4x+2=x^2-3x\)
\(\Leftrightarrow x^2-7x-2=0\)
\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)
bạn tự giải nốt nhé!!
d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)
\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
bạn tự làm nốt nhé
a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)
\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)
b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)
a) x² - 3x = 0
x(x - 3) = 0
x = 0 hoặc x - 3 = 0
*) x - 3 = 0
x = 3
Vậy x = 0; x = 3
b) x² - 6x + 8 = 0
x² - 2x - 4x + 8 = 0
(x² - 2x) - (4x - 8) = 0
x(x - 2) - 4(x - 2) = 0
(x - 2)(x - 4) = 0
x - 2 = 0 hoặc x - 4 = 0
*) x - 2 = 0
x = 2
*) x - 4 = 0
x = 4
Vậy x = 2; x = 4
\(\left(x^2-4\right)+\left(8-5.x\right).\left(x+2\right)+4.\left(x-2\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+\left(4.x-8\right).\left(x+1\right)=0\)
\(\Leftrightarrow x^2-4+8.x+16-5.x^2-10.x+4.x^2+4.x-8.x-8=0\)
\(\Leftrightarrow0+4-6.x=0\)
\(\Leftrightarrow4-6.x=0\)
\(\Leftrightarrow-6.x=-4\)
\(\Rightarrow x=\frac{2}{3}\)
Vậy x = \(\frac{2}{3}\)
A = \(-x^2\)\(-6x+3\)
A = \(-x^2\)\(-6x+9-6\)
A = \(-\left(x-3\right)^2\)\(-6\) ≤ \(-6\)
Dấu "=" xảy ra ⇔ \(x-3=0\)
⇔ \(x=3\)
Vậy Amax =\(-6\) ⇔ \(x=3\)