Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(m=1\) pt vô nghiệm (ktm)
Với \(m\ne1\Rightarrow\left(m-1\right)x=-3m+2\Rightarrow x=\frac{-3m+2}{m-1}\)
\(\Rightarrow\frac{-3m+2}{m-1}\ge1\Leftrightarrow\frac{-3m+2}{m-1}-1\ge0\Leftrightarrow\frac{-4m+3}{m-1}\ge0\)
\(\Rightarrow\frac{3}{4}\le m< 1\)
Câu 2:
ĐKXĐ: ...
\(\Leftrightarrow x^2+\frac{9x^2}{\left(x+3\right)^2}-2x.\frac{3x}{x+3}+\frac{6x^2}{x+3}-40=0\)
\(\Leftrightarrow\left(x-\frac{3x}{x+3}\right)^2+\frac{6x^2}{x+3}-40=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+3}\right)^2+\frac{6x^2}{x+3}-40=0\)
Đặt \(\frac{x^2}{x+3}=t\)
\(\Rightarrow t^2+6t-40=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{x+3}=4\\\frac{x^2}{x+3}=-10\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-12=0\\x^2+10x+30=0\end{matrix}\right.\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(\left(m-1\right)x=2-3m\) (với \(m\ne1\))
\(\Rightarrow x=\dfrac{2-3m}{m-1}\)
\(x\ge1\Rightarrow\dfrac{2-3m}{m-1}\ge1\)
\(\Rightarrow\dfrac{2-3m}{m-1}-1\ge0\Rightarrow\dfrac{3-4m}{m-1}\ge0\)
\(\Rightarrow\dfrac{3}{4}\le m< 1\)
\( (m-1)x+3m-2 =0 \\ \Leftrightarrow x= \dfrac{2-3m}{m-1} \\ \Rightarrow \) PT có nghiệm \(\Leftrightarrow m-1 \ne 0 \Leftrightarrow m \ne 1\)
\(x ≥ 1 \Leftrightarrow 2-3m ≥ m-1 \Leftrightarrow m ≤ \dfrac{3}{4}\)
Vậy \(m ≤ \dfrac{3}{4}\).
TH1: m=1 thay vào phương trình trên ta có:
\(0x+1=0\) ( vô lí)
Vậy m=1 loại
TH2: m khác 1
\(\left(m-1\right)x+3m-2=0\Leftrightarrow\left(m-1\right)x=2-3m\Leftrightarrow x=\frac{2-3m}{m-1}\)
\(x\ge1\Leftrightarrow\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{3-4m}{m-1}\ge0\)
\(\Leftrightarrow\frac{3}{4}\le m< 1\)
không biết có đúng không nữa :(, kiến thức toán lớp 9 là gì ??
Phương trình đã cho tương đương với
\(\left(m-1\right)x=2-3m.\)(*)
Với m=1 thì (*) \(\Leftrightarrow0x=2-3\Leftrightarrow0x=-1\)(vô lí)
Suy ra với m=1 thì phương trình đã cho vô nghiệm
Với m khác 1 thì (*) \(\Leftrightarrow x=\frac{2-3m}{m-1}\)suy ra với m khác 1 thì phương trình đã cho luôn có nghiệm duy nhất
Mà \(x\ge1\)nên \(\frac{2-3m}{m-1}\ge1\Leftrightarrow\frac{2-3m}{m-1}-\frac{m-1}{m-1}\ge0\Leftrightarrow\frac{2-3m-m+1}{m-1}\ge0\)
\(\Leftrightarrow\frac{-4m+3}{m-1}\ge0\)
Xảy ra 2 trường hợp:
TH1\(\hept{\begin{cases}-4m+3\ge0\\m-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}m\le\frac{3}{4}\\m>1\end{cases}\Leftrightarrow}}m\in\varnothing.\)
TH2 \(\hept{\begin{cases}-4m+3\le0\\m-1< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ge\frac{3}{4}\\m< 1\end{cases}\Leftrightarrow\frac{3}{4}\le}m< 1.\)
Vậy với \(\frac{3}{4}\le m< 1\)thì phương trình đã cho có nghiệm duy nhất \(x=\frac{2-3m}{m-1}\)thỏa mãn \(x\ge1\)