K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

Mình gợi ý: Nếu pt có nghiệm \(x=t\) thì cũng có nghiệm \(x=-t\).

Vậy nếu pt có 4 nghiệm và giả sử \(a< b< c< d\) thì \(d=-a,c=-b\).

Vậy AB=CD là hiển nhiên.

Mình chỉ cần BC=CD. Tức là \(2c=d-c\Rightarrow d=3c\).

Đặt \(X=x^2\). Ta tìm m để pt mới (bậc 2) có 2 nghiệm dương thoả nghiệm này gấp 3 nghiệm kia.

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0...
Đọc tiếp

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA

0
5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi

4 tháng 1 2018

với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104

với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4

\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2

b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0

\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0

\Rightarrow ∫m<8m>−2∫m>−2m<8

\Rightarrow -2<m<8 

\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}

c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2

hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5 

\Leftrightarrow m+2 = 1 ; 5

m+2 = 1 \Rightarrow m = -1

m+2 = 5 \Rightarrow m =3

20 tháng 1 2018

ở câu c sao y lại bằng như vậy

13 tháng 3 2016

bằng 1,36

13 tháng 2 2020

a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)

\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)

c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)

\(\Rightarrow x^2_1+x^2_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)

\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)

\(\Leftrightarrow13m^2-6m=0\)

\(\Leftrightarrow m\left(13m-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)

Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)