Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)
\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)
Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)
Phương trình trở thành :
\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)
a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)
Vậy phương trình có nghiệm là \(x=0\)
b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)
Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]
Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)
t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2
Suy ra phương trình đã cho có nghiệm đúng
\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)
Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
a)Điều kiện: \(x\ge\frac{3}{2}\)
Phương trình đã cho tương đương với:
\(\frac{\left(3x-2\right)-\left(x+1\right)}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\Leftrightarrow\frac{2x-3}{\sqrt{3x-2}+\sqrt{x+1}}=\left(2x-3\right)\left(x+1\right)\)
Chú ý rằng \(\sqrt{3x-2}+\sqrt{x+1}\ge\sqrt{x+1}>1\), do đó
\(\frac{1}{\sqrt{3x-2}+\sqrt{x+1}}< 1\)
Trong khi đó \(x+1>1\) nên phương trình có nghiệm duy nhất là \(x=\frac{3}{2}\)
\(\Leftrightarrow\sqrt{3m-2x}=2x+2\) (\(x\ge-1\))
\(\Leftrightarrow3m-2x=\left(2x+2\right)^2\)
\(\Leftrightarrow4x^2+10x+4=3m\)
Đặt \(f\left(x\right)=4x^2+10x+4\), xét \(f\left(x\right)\) trên \([-1;+\infty)\)
\(a=4>0\); \(-\frac{b}{2a}=-\frac{5}{4}< -1\Rightarrow f\left(x\right)\) đồng biến trên miền đã cho
\(\Rightarrow f\left(x\right)\ge f\left(-1\right)=-2\)
\(\Rightarrow\) Để pt đã cho có nghiệm thì \(3m\ge-2\Rightarrow m\ge-\frac{2}{3}\)