K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)

\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)

\(\Delta'=m^2-2m+1-m^2-m\)

\(\Delta'=-3m+1\)

để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)

b) \(3x^2+mx+m^2=0\)

\(\Delta=m^2-4.3.m^2\)

\(\Delta=m^2-12m^2=-11m^2\)

để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)

20 tháng 4 2018

c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)

\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)

\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)

để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)

\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)

\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)

\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )

\(\Leftrightarrow m>0\)

vậy \(m>0\)\(m\ne1\)

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.

AH
Akai Haruma
Giáo viên
1 tháng 3 2017

Lời giải:

a) Gọi nghiệm chung của hai PT là \(a\). Có nghiệm chung nghĩa là PT

\(a^2+ma+2-(a^2+2a+m)=0\) phải có nghiệm

\(\Leftrightarrow (a-1)(m-2)=0\)

Do đó nếu hai PT có nghiệm chung thì nghiệm đó là \(a=1\)

Thay vào \(\Rightarrow m+3=0\Rightarrow m=-3\)

b) Để PT \((x^2+mx+2)(x^2+2x+m)=0\) có bốn nghiệm phân biệt thì mỗi PT bậc hai trên phải có hai nghiệm pb.

Trước tiên phải xác định điều kiện có nghiệm\( \left\{\begin{matrix} \Delta _1=m^2-8>0\\ \Delta _2=4-4m>0\end{matrix}\right.\Rightarrow m<-\sqrt{8}\)

PT đã cho không có có bốn nghiệm phân biệt tức là \(x^2+mx+2=0\)\(x^2+2x+m=0\) không có nghiệm chung, tức là \(m\neq -3\)

Vậy \(\left\{\begin{matrix}m< -\sqrt{8}\\m\ne-3\end{matrix}\right.\)

c) Theo Viet có \(\left\{\begin{matrix} x_1+x_2=-m\\ x_1x_2=2\end{matrix}\right.+\left\{\begin{matrix} x_3+x_4=-2\\ x_3x_4=m\end{matrix}\right.\)

\(\Rightarrow E=x_1^2+x_2^2+x_3^2+x_4^2=m^2-4+4-2m=m^2-2m=(m-1)^2-1\geq -1\)

Vậy \(E_{\min}=-1\Leftrightarrow m=1\)

17 tháng 3 2018

a) \(\Delta=m^2-8\)

pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow m^2-8=0\Leftrightarrow\left[{}\begin{matrix}m=-\sqrt{8}\left(N\right)\\m=\sqrt{8}\left(N\right)\end{matrix}\right.\)

Kl: m= +-căn 8

b) \(\Delta'=\left(m-4\right)^2-\left(m^2+m+3\right)=-9m+13\)

pt có ng kép \(\Leftrightarrow\Delta=0\Leftrightarrow-9m+13=0\Leftrightarrow m=\dfrac{13}{9}\left(N\right)\)

Kl: m= 13/9

c) \(\Delta'=\left(-2\right)^2-4m^2=-4m^2+4\)

\(\Leftrightarrow\Delta=0\Leftrightarrow-4m^2+4=0\Leftrightarrow\left[{}\begin{matrix}m=-1\left(N\right)\\m=1\left(N\right)\end{matrix}\right.\)

Kl : m= +-1

3 tháng 9 2018

Câu 3 : Theo định lý vi - et ta luôn có :

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-4m+4\end{matrix}\right.\)

\(\Rightarrow A=\left|m^2-4m+4-2m\right|=\left|m^2-6m+4\right|=\left|\left(m-3\right)^2-5\right|\ge5\)

Vậy GTNN của A là 5 . Khi và chỉ khi \(\left(m-3\right)^2=0\Leftrightarrow m=3\)

3 tháng 9 2018

Bạn sửa dùm mình dấu > thành < nha !