Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
- Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\] - Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
a/ Để hàm số khác định trên R
\(\Rightarrow x^2-6m+m-2\ne0\) \(\forall x\)
\(\Rightarrow\Delta'=9-\left(m-2\right)< 0\Rightarrow m>11\)
b/ Tương tự: \(\Delta'=m^2-4< 0\Rightarrow-2< m< 2\)
c/ ĐKXĐ: \(\left\{{}\begin{matrix}2x-3m+4\ge0\\x+m-1\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{3m-4}{2}\\x\ne1-m\end{matrix}\right.\)
Để hàm xác số định trên D thì: \(\left\{{}\begin{matrix}\frac{3m-4}{2}\le0\\1-m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le\frac{4}{3}\\m>1\end{matrix}\right.\)
\(\Rightarrow1< m\le\frac{4}{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}-2x+3m+2\ge0\\2x+4m-8\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3m+2}{2}\\x\ne-2m+4\end{matrix}\right.\)
Hàm xác định trên khoảng đã cho khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{3m+2}{2}\ge-2\\-2m+4\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m\le3\end{matrix}\right.\) \(\Rightarrow-2\le m\le3\)