Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm đồng biến <=> a>0 <=> m-1>0 <=> m>1
Để hàm nghịch biến <=> a<0 <=> m<1
b)Có phải đề như này: \(y=-m^2x+1\)
Nhận xét: \(-m^2\le0\forall m\)
=> Hàm luôn nghịch biến với mọi \(m\ne0\)
c)Để hàm nghịch biến <=> a<0 <=> 1-3m<0\(\Leftrightarrow m>\dfrac{1}{3}\)
Để hàm đồng biền <=> a>0 \(\Leftrightarrow m< \dfrac{1}{3}\)
a/ Hàm số y=(m-1)x+2 đồng biến khi và chỉ khi m-1>0
⇔m>1
nghịch biến khi và chỉ khi m-1<0
⇔m<1
b/Hàm số y=-2mx+1 đồng biến khi và chỉ khi -2m>0
⇔m<0
nghịch biến khi và chỉ khi -2m<0
⇔m>0
c/Hàm số y=(1-3m)x+2m đồng biến khi và chỉ khi 1-3m>0
⇔-3m>-1
⇔m<\(\dfrac{1}{3}\)
nghịch biến khi và chỉ khi 1-3m<0
⇔-3m<-1
⇔m>\(\dfrac{1}{3}\)
đb <=> \(k^2-4>0\)
\(\Leftrightarrow k^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}k>2\\k>-2\end{cases}}\)
\(\Leftrightarrow k>2\)
nb <=> \(k^2-4< 0\)
\(\Leftrightarrow k^2< 4\)
\(\Leftrightarrow\orbr{\begin{cases}k< 2\\k< -2\end{cases}}\)
\(\Leftrightarrow k< -2\)
vậy .......
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
a/ Để hàm số đồng biến khi x>0
\(\Leftrightarrow1-2m>0\Rightarrow m< \frac{1}{2}\)
b/ Để hàm số nghịch biến khi x>0
\(\Leftrightarrow4m^2-9< 0\Leftrightarrow-\frac{3}{2}< m< \frac{3}{2}\)
c/ Để hàm số đồng biến khi x<0
\(\Leftrightarrow m^2-3m< 0\Leftrightarrow0< m< 3\)
d/ Do \(m^2-2m+3=\left(m-1\right)^2+2>0\) ;\(\forall m\)
\(\Rightarrow\) Hàm số đồng biến khi x>0 với mọi m
a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)
để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)
b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì
\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)
cậu xem đúng thì k y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2 sao cho |x2-x1| >1 (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0
mk mới hok lớp 8 nên cái tay bó tay!!! ^^
346456454574575675756768797835153453443457657656565
Để hàm số trên là hàm số đồng biến khi \(1-3m>0\Leftrightarrow m< \frac{1}{3}\)
Để hàm số trên là hàm số nghịch biến khi \(1-3m< 0\Leftrightarrow m>\frac{1}{3}\)