Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số có cực đại, cực tiểu \(\Leftrightarrow f'\left(x\right)=3x^2-6x+m^2=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=9-3m^2>0\Leftrightarrow\left|m\right|<\sqrt{3}\)
Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :
\(f\left(x\right)=\frac{1}{3}\left(x-1\right)f'\left(x\right)+\frac{2}{3}\left(m^2-3\right)x+\frac{m}{3}+m\)
Với \(\left|m\right|<\sqrt{3}\) thì phương trình \(f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)
Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) nên :
\(y_1=f\left(x_1\right)=\frac{2}{3}\left(m^2-3\right)x_1+\frac{m^2}{3}+m\)
\(y_2=f\left(x_2\right)=\frac{2}{3}\left(m^2-3\right)x_2+\frac{m^2}{3}+m\)
=> Đường thẳng đi qua cực đại, cực tiểu là \(\left(d\right):y=\frac{2}{3}\left(m^2-3\right)x+\frac{m^2}{3}+m\)
Các điểm cực trị \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\) đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)
\(\Leftrightarrow\left(d\right)\perp\left(\Delta\right)\) tại trung điểm I của AB (*)
Ta có \(x_1=\frac{x_1+x_2}{2}=1\) suy ra từ (*) \(\Leftrightarrow\begin{cases}\frac{2}{3}\left(m^2-3\right)\frac{1}{2}=-1\\\frac{2}{3}\left(m^2-3\right).1+\frac{m^2}{3}+m=\frac{1}{2}.1-\frac{5}{2}\end{cases}\)
\(\Leftrightarrow\begin{cases}m=0\\m\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=0\)
Ta có: y'= x2 - 3x - m -1 + (2x - 3)( x - m) = 3x2 - (2m + 6)x + 2m-1
y'=0 ↔ 3x2 - (2m + 6)x + 2m-1 = 0 (1)
Để hàm số y= (x - m)( x2 - 3x - m - 1) có cực đại và cực tiểu thì phương trình y'=0 có 2 nghiệm phân biệt ↔ phương trình (1) có 2 nghiệm phân biệt ↔ Δ' > 0 ↔ (m+3)2 - 3(2m-1) >0 ↔ m2 + 12 > 0 ( mọi m)
→ Hầm số luôn có cả cực đại và cực tiểu.
Gọi x1 và x2 là 2 nghiệm của phương trình (1)
Khi đó, theo định lý Vi-ét, nghiệm của phương trình (1) là: x1 + x2 = ( 2m+6)/3 ; x1x2= (2m -1)/3
Theo bài ra, ta có: | xCĐ - xCT| \(\ge\frac{\sqrt{52}}{3}\)
↔| x1 - x2| \(\ge\frac{\sqrt{52}}{3}\) ↔ 9| x1 - x2|2 \(\ge\) 52 ↔ 9( x1 + x2)2 - 36x1x2 \(\ge\) 52
↔ m2 \(\ge\) 1
→ \(m\ge1\) hoặc \(m\le-1\)
Hàm số xác định trên R
Ta có \(y'=3x^2-2\left(m+3\right)x+2m-1\)
\(\Rightarrow y'=0\Leftrightarrow3x^2-2\left(m+3\right)x+2m-1=0\left(1\right)\)
Hàm số có 2 điểm cực trị thỏa mãn \(\left|x_{CD}-x_{CT}\right|\ge\frac{\sqrt{52}}{3}\Leftrightarrow\) phương trình (1) có 2 nghiệm \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|\ge\frac{\sqrt{52}}{3}\) \(\Leftrightarrow\begin{cases}\Delta'=m^2+7>0\\\left(x_1+x_2\right)^2-4x_1x_2\ge\frac{52}{9}\end{cases}\)
Theo định lý Viet ta có : \(\begin{cases}x_1+x_2=\frac{2\left(m+3\right)}{3}\\x_1x_2=\frac{2m-1}{3}\end{cases}\)
Suy ra \(\left(\frac{2\left(m+3\right)}{3}\right)^2-4\frac{2m-1}{3}\ge\frac{52}{9}\)
\(\Leftrightarrow4m^2-4\ge0\Leftrightarrow m\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
Vậy m\(\in\)(-\(\infty;-1\)] \(\cup\) [\(1;+\infty\))
\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m\left(1-2m\right)\right)\)
\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m\left(1-2m\right)=0\)
Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-1\right)^2-4m\left(1-2m\right)=\left(3m-1\right)^2>0\Leftrightarrow m\ne\frac{1}{3}\)
Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m+1\right)\right]-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)
Với \(m\ne\frac{1}{3}\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại \(x_1;x_2\)
do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) suy ra đường thẳng qua cực đại, cực tiểu là
\(\Delta:y=-\left(3m-1\right)^2x+m\left(m-1\right)\left(1-2m\right)\)
Ta có cực địa, cực tiểu nằm trên đường thẳng \(y=-4x\)
\(\Leftrightarrow\begin{cases}-\left(3m-1\right)^2=-4\\m\left(m-1\right)\left(1-2m\right)=0\end{cases}\)\(\Leftrightarrow\begin{cases}\left|3m-1\right|=2\\m\in\left\{0;1;\frac{1}{2}\right\}\end{cases}\) \(\Leftrightarrow m=1\)
Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)
Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)
\(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)
Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)
=> Các điểm cực trị là :
\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)
Gọi I là giao điểm của hai đường thẳng d và d' :
\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)
A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)
Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d
Vậy m = 0 là giá trị cần tìm
Theo yêu cầu bài toán ta có \(\begin{cases}ab< 0\\AB=BC=CA\end{cases}\) \(\Leftrightarrow\begin{cases}m< 2\\8\left(m-2\right)^3+24=0\end{cases}\)
\(\Leftrightarrow m=2-\sqrt[3]{3}\)
Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=3x^3+2mx+7=0\) có 2 nghiệm phân biệt
<=> \(\Delta'=m^2-21>0\Leftrightarrow\left|m\right|>\sqrt{21}\)
Thực hiện phép chia f(x) cho f'(x) ta có :
\(f\left(x\right)=\frac{1}{9}\left(3x+m\right)f'\left(x\right)+\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)
Với \(\left|m\right|>\sqrt{21}\) thì phương trình f'(x) = 0 có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)
Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) suy ra:
\(y_1=f\left(x_1\right)=\frac{2}{9}\left(21-m^2\right)x_1+3-\frac{7m}{9}\)
\(y_2=f\left(x_2\right)=\frac{2}{9}\left(21-m^2\right)x_2+3-\frac{7m}{9}\)
=> Đường thẳng đi qua cực đại, cực tiểu là :
\(\left(\Delta\right):y=\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)
Ta có \(\left(\Delta\right)\perp y=3x-7\Leftrightarrow\frac{2}{3}\left(21-m^2\right).3=-1\Leftrightarrow m^2=\frac{45}{2}>21\)
\(\Leftrightarrow m=\pm\frac{3\sqrt{10}}{2}\)
Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :
\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)
Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)
\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc
\(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)
a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0
\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)
b) Hàm số chỉ có cực tiểu mà không có cực đại
\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)
Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :
\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)