K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

ta có :

(m-3)x+5-m>0 => (m-3)x>m-5

=> x> m-5/m-3(1)

(m-3)x+m-2>0 => (m-3)x>(2-m)

=> x>2-m /m-3(2)

từ (1) và (2) suy ra để hai bpt có cùng tập nghiệm thì m-5/m-3 =2-m/m-3

=> m-5=2-m

=>2m=7 =>m=7/2

27 tháng 2 2017

Dạ e cảm ơn ạ

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

13 tháng 7 2017

Ta có: 2. |3x - 1| + 1 = 5

=> 2. |3x - 1| = 5 - 1 = 4

=> |3x - 1| = 4/2 = 2

=> 3x - 1 = 2 hoặc 3x - 1 = -2

+/ 3x - 1 = 2

=> 3x = 2 +1 = 3

=> x = 3/3 =1

+/ 3x - 1 = -2

=> 3x = -2 + 1 = -1

=> x = -1/3

Vậy x thuộc {1; -1/3}.

13 tháng 7 2017

\(2\left|3x-1\right|+1=5\)

\(\Leftrightarrow2.\left|2x-1\right|=5-1\)

\(\Leftrightarrow\left|2x-1\right|=\dfrac{5-1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2\\2x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

14 tháng 6 2017

\(VT=\dfrac{1+cos2x}{cos2x}\times\dfrac{1+cos4x}{sin4x}\) (*)

Ta có: theo công thức hạ bậc có: \(cos^2x=\dfrac{1+cos2x}{2}\Leftrightarrow1+cos2x=2cos^2x\) (1)

Ta có: \(cos2x=1-sin^2x\Rightarrow cos4x=1-2sin^22x\) (2)

Tương Tự có \(sin2x=2sinx\times cosx\Rightarrow sin4x=2sin2x\times cos2x\) (3)

Thay (1),(2),(3) vào (*) ta được: \(VT=\dfrac{2cos^2x}{cos2x}\times\dfrac{1+\left(1-2sin^22x\right)}{2sin2x\times cos2x}\)

\(VT=\dfrac{2cos^2x\times2\left(1-sin^22x\right)}{cos^22x\times2sin2x}\)\(1-sin^22x=cos^22x\)

\(\Rightarrow VT=\dfrac{2cos^2x\times cos^22x}{cos^22x\times2sinx\times cosx}=\dfrac{cosx}{sinx}=tanx\left(đpcm\right)\)

14 tháng 6 2017

đoạn cuối nhầm nha \(VT=\dfrac{cosx}{sinx}=cotx\left(đpcm\right)\)

23 tháng 6 2017

Theo bài ra :

\(\left(x+5\right)\left(x^2-1\right)\left(3-x\right)>0\)

<=> \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)>0\)

Đặt \(\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(3-x\right)=A\)

Ta có bảng xét dấu :

\(-\infty\) -5 -1 1 3 \(+\infty\)
(x+5) - 0 + + + +
x2-1 + + 0 - 0 + +
3-x + + + + 0 -
A - (loại) 0 (loại) +(t.m) 0(loại) -(loại) 0(loại) +(t.m) 0(loại) -(loại)

Từ bảng xét dấu trên suy ra :

\(A>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\1< x< 3\end{matrix}\right.\)

23 tháng 6 2017

\(\infty\) nghĩa là gì vậy bạn

13 tháng 7 2017

What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!bucminh

13 tháng 7 2017

tui mới lớp 7 mà

19 tháng 2 2017

ĐKXĐ:\(x\ge0;y\ge1;z\ge2\)

\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1+2\sqrt{y-1}+1\right)+\left(z-2+2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-2\right)^2=0\)

\(\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2\ge0\\\left(\sqrt{y-1}-1\right)^2\ge0\\\left(\sqrt{z-2}-2\right)^2\ge0\end{matrix}\right.\)\(\forall x;y;z\)

\(\Rightarrow\left\{\begin{matrix}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-1}-1=0\\\sqrt{z-2}-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x-1=1\\y-1=1\\z-2=4\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=2\\z=6\end{matrix}\right.\)

=> x02 + y02 + z02 = 22 + 22 + 62 = 44

a) -2/3 - 1/3.(2x-5)=3/2
1/3.(2x-5)= -2/3 - 3/2
1/3.(2x-5) = -13/6
2x-5 = -13/6 : 1/3
2x-5 = -13/2
2x = -13/2 + 5 = -3/2
x=-3/2 : 2 = -3/4
Xl pn nh mk chỉ có thể giúp pn câu a thôi
vì nó hơi dài mỏi tay lém nên mk xl nkoa

9 tháng 4 2017

xin lỗi toán lp 6

14 tháng 3 2017

Thay haha= x ; khocroi là y nhé bạn =='.

Theo đề bài ta có :

\(\left\{{}\begin{matrix}x+y=23\\x\cdot y=132\\y-x=1\end{matrix}\right.\left(ĐK:x,y>0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\y-\left(23-y\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=23-y\\x\cdot y=132\\2y=24\Rightarrow y=12\end{matrix}\right.\)

Thay y = 12 vào hai đẳng thức trên ta được :

\(x+12=23\Rightarrow x=11\) hay \(x\cdot12=132\Rightarrow x=11\)

Vậy \(\left\{{}\begin{matrix}x=11\\y=12\end{matrix}\right.\) hay haha\(=11\); khocroi\(=12\).

14 tháng 3 2017

jij