Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)
mình đánh nhầm, giúp vs ạ
Ta có : \(\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3>0\end{matrix}\right.\)
Để \(f\left(x\right)\le0\forall x\in\left[0;1\right]\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m+1\le0\end{matrix}\right.\Rightarrow1\le m\le2\)
Vậy ...
a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m
b/
- Với \(m\le1\) BPT luôn có nghiệm
- Với \(m>1\) để BPT có nghiệm
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)
\(\Leftrightarrow2m^2+3m+11\ge0\)
\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)
Vậy BPT đã cho có nghiệm với mọi m
\(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
m thuôc (2;3) luôn sai
m thuộc (-vc;2]U[3;vc)
\(x_1=m-2-\sqrt{m^2-5m+6};x_2=m-2+\sqrt{m^2-5m+6}\)
\(\dfrac{-b}{2a}=\left(m-2\right)\)
m-2 <= 0 <=> m<=2 cần f(1) <=0<=> 1-2(m-2) +(m-2) <=0
<=>(m-2) >=1 => loại
m-2>=1 <=> m>=3
cần f(0) <=0<=> (m-2) <=0 => loại
kết luận vô nghiệm m
\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)
a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)
\(\Leftrightarrow x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Do đó các câu c, f cũng không tồn tại m thỏa mãn
b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)
\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)
\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m
Kết hợp 3 TH \(\Rightarrow m\ge2\)
d/ Tương tự như câu b, nhưng
TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m>3\)
Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)
e/
TH1: \(\Delta\le0\Rightarrow2\le m\le3\)
TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)
\(\Rightarrow m\ge2\)
\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)
Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)
\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)
\(\Leftrightarrow m\ge3\)