K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2021

\(f\left(x\right)=x^2-2\left(m-1\right)x+m-2\)

Yêu cầu bài toán thõa mãn khi \(f\left(x\right)=0\) có hai nghiệm thỏa mãn \(x_1\le1< 3\le x_2\)

\(\left\{{}\begin{matrix}\Delta'=m^2-3m+3\ge0\\f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\in R\\-m+1\le0\\15-5m\le0\end{matrix}\right.\)

\(\Leftrightarrow m\ge3\)

29 tháng 4 2020

\(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\)

mình đánh nhầm, giúp vs ạ

14 tháng 4 2020

Ta có : \(\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3>0\end{matrix}\right.\)

Để \(f\left(x\right)\le0\forall x\in\left[0;1\right]\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\-m+1\le0\end{matrix}\right.\Rightarrow1\le m\le2\)

Vậy ...

NV
23 tháng 5 2020

a/ Do \(a=2>0\) nên BPT đã cho có nghiệm với mọi m

b/

- Với \(m\le1\) BPT luôn có nghiệm

- Với \(m>1\) để BPT có nghiệm

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m-1\right)\left(-m+2\right)\ge0\)

\(\Leftrightarrow2m^2+3m+11\ge0\)

\(\Leftrightarrow2\left(m+\frac{3}{4}\right)^2+\frac{79}{8}\ge0\) (luôn đúng)

Vậy BPT đã cho có nghiệm với mọi m

10 tháng 2 2018

\(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

m thuôc (2;3) luôn sai

m thuộc (-vc;2]U[3;vc)

\(x_1=m-2-\sqrt{m^2-5m+6};x_2=m-2+\sqrt{m^2-5m+6}\)

\(\dfrac{-b}{2a}=\left(m-2\right)\)

m-2 <= 0 <=> m<=2 cần f(1) <=0<=> 1-2(m-2) +(m-2) <=0

<=>(m-2) >=1 => loại

m-2>=1 <=> m>=3

cần f(0) <=0<=> (m-2) <=0 => loại

kết luận vô nghiệm m

NV
2 tháng 4 2020

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

NV
2 tháng 4 2020

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)