K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Ta có: PQ = x 2 - x 1 2 + y 2 - y 1 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 10 2017

Ta có: M N 2 = M D 2 + N D 2 = 3 + 2 2 + 3 - 2 2  = 25 + 9 = 34

AB = 34 ≈ 5,83

25 tháng 7 2017

Ta có: A B 2 = A C 2 + B C 2 = 5 - 1 2 + 4 - 1 2  = 16 + 9 = 25

AB = 25 = 5

PTHĐGĐ là:

x^2-2x-m+2=0

Δ=(-2)^2-4(-m+2)

=4+4m-8=4m-4

Để (P) tiếp xúc (d) thì 4m-4=0

=>m=1

=>x^2-2x+1=0

=>x=1

=>y=1

1:

a: loading...

b: PTHĐGĐ là:

-1/4x^2-x-1=0

=>x^2+4x+4=0

=>(x+2)^2=0

=>x=-2

=>y=-1/4*(-2)^2=-1

2: 3x-y=5 và 2x+3y=18

=>9x-3y=15 và 2x+3y=18

=>11x=33 và 3x-y=5

=>x=3 và y=3*3-5=4

22 tháng 5 2021

Xét pt hoành độ gđ của (d) và (P) có:

\(x^2=2x+4m^2-8m+3\)

\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)

\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)

Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)

Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)

\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)

\(y_1+y_2=10\)

\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)

\(\Leftrightarrow8m^2-16m=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)

Vậy...

 

a) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

PTHĐGĐ là:

x^2-2x-m+1=0

Δ=(-2)^2-4*1*(-m+1)

=4+4m-4=4m

Để (P) tiếp xúc (d) thì 4m=0

=>m=0

=>x^2-2x+1=0

=>x=1

=>y=1