K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

Ta có: số nguyên tố thì chỉ có ước là 1 và chính số đó nên:

a) để 3k(k thuộc N ) là số nguyên tố thì k=1

b)để 7k(k thuộc N) là số nguyên tố thì k=1

27 tháng 7 2015

cho tớ xin ****. Thanks

 

23 tháng 10 2015

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

14 tháng 10 2022

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

     

Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]

           nếu k=1 thì 23k=23 nguyên tố 

           nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]

             Vậy k=1

Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.

 

30 tháng 3 2017

a) A=2;3;5;...

b) A= 4;6;8;...

c) A=1

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Điền vào chỗ trống với số thích hợp (Chú ý: viết số thập phân với "chấm" giữa phần số và phần phân số. Ví dụ: 0,5)Câu hỏi 1:Bội số nhỏ nhất của 47 là0Câu hỏi 2:K là một số nguyên tố và một bội số của 43. K là gì?Trả lời: K =43Câu hỏi 3:Có bao nhiêu số nguyên tố nhỏ hơn 10?Trả lời: Có3 số.Câu hỏi 4:Điều nào sau đây là số nguyên tố?Bài giải:83Câu hỏi 5:Một số nguyên...
Đọc tiếp

Điền vào chỗ trống với số thích hợp (Chú ý: viết số thập phân với "chấm" giữa phần số và phần phân số. Ví dụ: 0,5)
Câu hỏi 1:
Bội số nhỏ nhất của 47 là
0
Câu hỏi 2:
K là một số nguyên tố và một bội số của 43. K là gì?
Trả lời: K =
43
Câu hỏi 3:
Có bao nhiêu số nguyên tố nhỏ hơn 10?
Trả lời: Có
3
 số.
Câu hỏi 4:
Điều nào sau đây là số nguyên tố?

Bài giải:
83
Câu hỏi 5:
Một số nguyên tố giữa 42 và 46 là
43
Câu hỏi 6:
Số 55 có
 yếu tố.
Câu hỏi 7:
Tìm tổng của tất cả các yếu tố của 19
Bài giải:
Câu hỏi 8:
Trong các số sau đây, trong đó có hầu hết các yếu tố gì?

Bài giải:
Câu hỏi 9:
Có bao nhiêu số 1-500 là bội số của 6?
Bài giải:
Câu hỏi 10:
Có bao nhiêu số nguyên tố đã được hình thành?
Trả lời: Có
bao nhiêu số

1
13 tháng 12 2015

ai tra loi dc mik cho 1 tick

19 tháng 11 2016

các bn làm ơn giúp mk dzới

 

6 tháng 10 2015

Có: 19.k có ít nhất 3 ước là 1; k và 19

=> 19.k là hợp số (KTM)

Mà 19 là số nguyên tố 

=> Để 19.k là số nguyên tố thì k = 1

KL: k = 1 để 19.k là số nguyên tố

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿