Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y=xy\)=> \(x=xy-y=y\left(x-1\right)\)=>\(x:y=x-1\) (1)
Ta lại có x: y= x+ y ( 2)
Từ (1) và (2) suy ra \(y=-1\) . Từ đó có \(x=\dfrac{1}{2}\)
Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)
=> \(y^2=1\) => \(y=\pm1\)
Thay \(y=1\) vào \(x-y=x.y\) ta có : \(x-1=x.1\)
=> \(x-1=x\)=> \(0x=1\)( vô lý) => loại
Thay \(y=-1\) vào \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)
=> \(x+1=-x\)=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
\(xy=\frac{x}{y}\)
=> xy.y = x
=> y2 = 1
=> \(y=\orbr{\begin{cases}1\\-1\end{cases}}\)
thay từng giá trị y = 1 ; y = -1 vào đẳng thức :
x + y = \(\frac{x}{y}\)
Với y = 1
=> x không có giá trị
Với y = -1
=> x = \(-\frac{1}{2}\)
Từ\(x\cdot y=\frac{x}{y}\)\(\Rightarrow y^2=\frac{x}{x}=1\)\(\Rightarrow y=1,y=-1\)
Mặt khác:Từ\(x-y=x\cdot y\Rightarrow\frac{x-y}{xy}=1\Rightarrow\frac{1}{y}-\frac{1}{x}=1\)
+) y=1=>\(1-\frac{1}{x}=1\Rightarrow0=\frac{1}{x}\)(VL)
+) y=-1=>\(-1-\frac{1}{x}=1\Rightarrow-2=\frac{1}{x}\Rightarrow x=-\frac{1}{2}\)
Vậy.........................
x-2y= 2(x+y)
=> x-2y = 2x+2y
=> -2y-2y= 2x-x
=> x= -4y
Thay x= -4y vào x-y= x/y
=> -4y-y = -4y/ y
=.> -5y= -4
=> y =4/5
=> x= -16/5
bạn ơi mk làm nhanh chỗ tìm x nha
chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5
\(x+y=x.y=>x=x.y-y=y.\left(x-1\right)=>\frac{x}{y}=x-1\left(1\right)\)
Mà theo đề" \(x+y=\frac{x}{y}\left(2\right)\)
Từ (1) và (2) \(=>x-1=x+y=>y=-1\)
Thay y=-1 vào (1),ta có:
\(\frac{x}{-1}=x-\left(-1\right)=>-x=x+1=>-2x=1=>x=\frac{-1}{2}\)
Vậy x=-1/2;y=-1
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Ta có: x+y=xy => xy-y=x => y(x-1)=x
Ta lại có: \(x+y=\frac{x}{y}\)thay x= y(x-1) vào vế phải ta có:
\(x+y=\frac{y\left(x-1\right)}{y}=x-1\)
=> x+y=x-1 => y=-1
Thay y=-1 vào ta có:
\(x+\left(-1\right)=-1\cdot x\Leftrightarrow x-1=-x\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
1
a/
[x+1].[x-2] < 0 => x+1 và x-2 trái dấu
mà x+1 > x-2
=> x+1 > 0 ; x-2 < 0
=> -1 < x < 2 , x thuộc Q
b/
T.tự -2/3 < x < 2 , x thuộc Q
2.
x+y = xy
=> y = xy -x = x.[y-1]
=> x : y = y-1 = x+y
=> x = -1
thay vào x+y = xy
=> y-1 = -y => 2y = 1 => y= 1/2
Vậy x= -1 ; y = 1/2
x - y = xy
\(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )
Theo bài ra : x : y = x - y
\(\Rightarrow\)x + 1 = x - y
\(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy , ta được :
x - ( -1 ) = x . ( -1 )
x + 1 = -x
2x = -1
x = \(\frac{-1}{2}\)
Vậy ...
Ta có:
x - y = xy = x/y
Xét xy = x : y
=> y.y = x : x
=> y^2 = 1
=> y = 1
=> x - 1 = x (vô lí)
ta có:
\(x+y=x.y\)
\(\Rightarrow y=x.y-x=x.(y-1)\)
\(\Rightarrow x:y=y-1=x+y\)
\(\Rightarrow x=-1\)
\(thay\) \(x+y=x.y\)
\(\Rightarrow y-1=-y\Rightarrow2y=1\Rightarrow y=\dfrac{1}{2}\)
\(\Rightarrow x=-1;y=\dfrac{1}{2}\)
\(\dfrac{1}{y}=\dfrac{x}{4}-\dfrac{1}{2}=\dfrac{x-2}{4}=>y.\left(x-2\right)=4\)
Vì x ,y \(\in\) z nên x - 2 \(\in\) z , ta có bảng sau :