Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
a) Ta có : 6x(3x + 5) - 2x(9x - 2) + (17 - x)(x - 1) + x(x - 18) = 0
<=> 18x2 + 30x - 18x2 + 4x + 17x - 17 - x2 + x + x2 - 18x = 0
<=> 34x - 17 = 0
<=> 34x = 17
=> x = 2
\(a,x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
\(V\text{ì}\left(x+1\right)^2\ge0\)
\(\left(x+1\right)^2+6\ge0+6\)
\(\left(x+1\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy MinA=6 khi x=-1
b) \(x^2+x+1\)
\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(x=\dfrac{1}{2}\)
a) \(A=x^2-3x-x+3+11\)
\(=\left(x^2-4x+4\right)+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\in R\)
Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
b) \(B=5-4x^2+4x\)
\(=-\left(4x^2-4x+1\right)+6\)
\(=-\left(2x-1\right)^2+6\le6\forall x\in R\)
Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)
\(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)
Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
1.tìm gtnn
A=x2+9x+56
B=x2-2x+15
C=9x2-12x
2.tìm gtln
D=-9x2+x
E=-x2+3x-5
F=-16x2-5x
Giúp mjk vs mn ơi:33
\(A=x^2+9x+56=\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\)
Vì \(\left(x+\frac{9}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{9}{2}\right)^2+\frac{143}{4}\ge\frac{143}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{9}{2}\right)^2=0\Leftrightarrow x=-\frac{9}{2}\)
Vậy minA = 143/4 <=> x = - 9/2
\(B=x^2-2x+15=\left(x-1\right)^2+14\)
Vì \(\left(x-1\right)^2\ge0\)\(\Rightarrow\left(x-1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy minB = 14 <=> x = 1
\(C=9x^2-12x=9\left(x-\frac{2}{3}\right)^2-4\)
Vì \(\left(x-\frac{2}{3}\right)^2\ge0\forall x\)\(\Rightarrow9\left(x-\frac{2}{3}\right)^2-4\ge-4\)
Dấu "=" xảy ra \(\Leftrightarrow9\left(x-\frac{2}{3}\right)^2=0\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)
Vậy minC = - 4 <=> x = 2/3
Bài 1.
A = x2 + 9x + 56
= ( x2 + 9x + 81/4 ) + 143/4
= ( x + 9/2 )2 + 143/4
( x + 9/2 )2 ≥ 0 ∀ x => ( x + 9/2 )2 + 143/4 ≥ 143/4
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 143/4 <=> x = -9/2
B = x2 - 2x + 15
= ( x2 - 2x + 1 ) + 14
= ( x - 1 )2 + 14
( x - 1 )2 ≥ 0 ∀ x => ( x - 1 )2 + 14 ≥ 14
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 14 <=> x = 1
C = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4
9( x - 2/3 )2 ≥ 0 ∀ x => 9( x - 2/3 )2 - 4 ≥ -4
Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3
=> MinC = -4 <=> x = 2/3
Bài 2.
D = -9x2 + x
= -9( x2 - 1/9x + 1/324 ) + 1/36
= -9( x - 1/18 )2 + 1/36
-9( x - 1/18 )2 ≤ 0 ∀ x => -9( x - 1/18 )2 + 1/36 ≤ 1/36
Đẳng thức xảy ra <=> x - 1/18 = 0 => x = 1/18
=> MaxD = 1/36 <=> x = 1/18
E = -x2 + 3x - 5
= -( x2 - 3x + 9/4 ) - 11/4
= -( x - 3/2 )2 - 11/4
-( x - 3/2 )2 ≤ 0 ∀ x => -( x - 3/2 )2 - 11/4 ≤ -11/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxE = -11/4 <=> x = 3/2
F = -16x2 - 5x
= -16( x2 + 5/16x + 25/1024 ) + 25/64
= -16( x + 5/32 )2 + 25/64
-16( x + 5/32 )2 ≤ 0 ∀ x => -16( x + 5/32 )2 + 25/64 ≤ 25/64
Đẳng thức xảy ra <=> x + 5/32 = 0 => x = -5/32
=> MaxF = 25/64 <=> x = -5/32
a/ \(A=x^2-4x+15\)
\(=x^2-4x+4+11\)
\(=\left(x-2\right)^2+11\)
Nhận xét : \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+11\ge11\)
\(\Leftrightarrow A\ge11\)
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{Min}=11\Leftrightarrow x=2\)
b/ \(B=9x^2-3x+17\)
\(=9x^2-3x+\dfrac{1}{4}+\dfrac{67}{4}\)
\(=\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\)
Nhận xét : \(\left(3x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(3x-\dfrac{1}{2}\right)^2+\dfrac{67}{4}\ge\dfrac{67}{4}\)
\(\Leftrightarrow B\ge\dfrac{67}{4}\)
Dấu "=" xảy ra khi : \(x=\dfrac{1}{6}\)
Vậy...
a)\(A=x^2-4x+15=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\) nên muốn \(x^2-4x+15\) có được GTNN thì \((x-2)^2=0\)
\(\Rightarrow Min_A=0+11=11\)