K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

4 tháng 9 2017

a)\(A=\sqrt{25}-\sqrt{x^2-4x+4}\)

\(=5-\sqrt{\left(x-2\right)^2}\)

Thấy: \(\sqrt{\left(x-2\right)^2}\ge0\)\(\Rightarrow-\sqrt{\left(x-2\right)^2}\le0\)

\(\Rightarrow A=5-\sqrt{\left(x-2\right)^2}\le5\)

Khi \(x=2\)

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):

\(B=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-6\right)^2}\)

\(=\left|x-5\right|+\left|x-6\right|\)\(=\left|x-5\right|+\left|6-x\right|\)

\(\ge\left|x-5+6-x\right|=1\)

Khi \(5\le x\le6\)