K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Đặt \(A=x^2+15y^2+xy+8x+y+2020\)

\(\Rightarrow4A=4x^2+60y^2+4xy+32x+4y+8080\)

\(=\left(4x^2+4xy+y^2\right)+59y^2+32x+4y+8080\)

\(=\left(2x+y\right)^2+16.\left(2x+y\right)+64+59y^2+4y-16y+8016\)

\(=\left(2x+y+8\right)^2+59y^2-12y+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-\frac{59}{12}y\right)+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y^2-2\cdot y\cdot\frac{59}{24}+\frac{59^2}{24^2}-\frac{59^2}{24^2}\right)+8016\)

\(=\left(2x+y+8\right)^2+59\cdot\left(y-\frac{59}{24}\right)^2+7659,439236\ge7659,439236\)

\(\Rightarrow A\ge1914,859809\)

Dấu "=" xảy ra \(\Leftrightarrow y=\frac{59}{14};x=-\frac{171}{28}\)

P/s : Bài này hơi xấu .....

25 tháng 8 2020

Đặt \(A=x^2+15y^2+xy+8x+y+2020\)

Ta có: \(A=x^2+x\left(y+8\right)+15y^2+y+2020=\left(x^2+x\left(y+8\right)+\frac{\left(y+8\right)^2}{4}\right)\)\(+\left(15y^2+y-\frac{\left(y+8\right)^2}{4}\right)+2020=\left(x+\frac{y+8}{2}\right)^2+\frac{59y^2-12y-64}{4}+2020\)\(=\left(x+\frac{y+8}{2}\right)^2+\frac{59\left(y-\frac{6}{59}\right)^2-\frac{3812}{59}}{4}+2020\ge\frac{\frac{-3812}{59}}{4}+2020=\frac{118227}{59}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}y-\frac{6}{59}=0\\x=-\frac{y+8}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-239}{59}\\y=\frac{6}{59}\end{cases}}\)

22 tháng 8 2020

x^2 + 15y^2 + xy + 8x + y + 2020

= ( x^2 + y^2/4 + 16 + xy + 8x + 4y ) + 59/4.( y^2 + 16/59y + 64/3481 )

= ( x + y/2 + 4 )^2 + 59/4 .( y + 8/59 )^2 + 119220/59 ≥ 119220/59

Dấu = xảy ra <=> y = -8/59 và x = -228/59

18 tháng 7 2024

ez

7 tháng 6 2018

Viết được bao nhiêu chữ số có 3 chữ số mà mỗi số chỉ có duy nhất 1 chữ số 4? 

7 tháng 6 2018

mình k'o hiểu lắm . Nếu mình thì mình đã giúp bạn rồi .Cho mình xin lỗi

5 tháng 3 2018

x2 + 15y2 + xy + 8x + y + 2016

\(=\left(x+\frac{y}{2}+4\right)^2+\frac{45}{5}\left(y-\frac{2}{5}\right)^2-535,25\ge535,25\)

\(\Rightarrow Min_A=-535,25\text{ khi }x=\frac{-61}{15};y=\frac{2}{15}\)

30 tháng 6 2019

\(P=\frac{2020}{x^2+y^2}+\frac{2019}{xy}\)

\(P=\frac{2020}{\left(x+y\right)^2-2xy}+\frac{2019}{xy}\)

\(P=\frac{-2020}{2xy-4}+\frac{2019}{xy}\)

\(P=\frac{-1010}{xy-2}+\frac{2019}{xy}\)

Áp dụng bđt AM-GM : \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{4}{4}=1\)

\(P\ge\frac{-1010}{1-2}+\frac{2019}{1}=3029\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

1 tháng 7 2019

Bonking cách em nè:)Gọn hơn xíu:v

\(P=\frac{2020}{x^2+y^2}+\frac{1010}{xy}+\frac{1009}{xy}\)\(=2020\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1009}{xy}\)

\(\ge\frac{2020.4}{\left(x+y\right)^2}+\frac{1009}{\frac{\left(x+y\right)^2}{4}}=2020+1009=3029\)

Đẳng thức xảy khi x = y = 1

Vậy..

\(A=3x^2+8y^2+8xy+2020=2x^2+8xy+8y^2+x^2+8x+16+2004.\)

\(=2\left(x^2+4xy+4y^2\right)+\left(x+4\right)^2+2004\)

\(=2\left(x+2y\right)^2+\left(x+4\right)^2+2004\)

ta thấy \(\left(x+4\right)^2\ge0\)dấu "=" xảy ra khi x=-4

và \(2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=-2y

\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2\ge0\)dấu "=" xảy ra khi x=4 và y=2

\(\Rightarrow\left(x+4\right)^2+2\left(x+2y\right)^2+2004\ge2004\)dấu "=" xảy ra khi x=4 và y=2

\(\Rightarrow A\ge2004\). dấu "=" xảy ra  khi x=4 và y=2

min a=2004 khi x=4 và y=2

21 tháng 6 2019

   \(3x^2+8y^2+8xy+8x+2020\)

\(=4x^2-x^2+4y^2+4y^2+8xy+8x+2036-16\)

\(=\left(4x^2+8xy+4y^2\right)+\left(-x^2+8x-16\right)+4y^2+2036\)

\(=4\left(x^2+2xy+y^2\right)-\left(x^2-8x+16\right)+4y^2+2036\)

\(=4\left(x+y\right)^2-\left(x-4\right)^2+4y^2+2036\)

Đặt \(A=4\left(x+y\right)^2-\left(x-4\right)^2\)

Đặt \(B=4y^2+2036\)

Vì \(4\left(x+y\right)^2\ge0\)

    \(\left(x-4\right)^2\ge0\)

\(\Rightarrow A=4\left(x+y\right)^2-\left(x-4\right)^2\ge0\)

\(\Rightarrow GTNN_A=0\)tại \(x=4\)và \(y=-4\)

Thế \(y=-4\)vào B, ta có:

\(B=4\left(-4\right)^2+2036\)

\(B=2100\)

Vậy GTNN của biểu thức trên bằng \(GTNN_A+B=0+2100=2100\)

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)