K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2019

\(P=x^2+2y^2-2xy-8y+2018\)

   \(=\left(x+y\right)^2+\left(y-4\right)^2+2002\ge2002\forall x;y\) 

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y=4\end{cases}}}\)

\(\Rightarrow x=-4\)

Vậy minP=2002 tại  x=-4;y=4

                     

31 tháng 7 2019

a) \(P=x^2+2y^2-2xy-8y+2018\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-8y+16\right)+2012\)

\(=\left(x-y\right)^2+\left(y-4\right)^2+2012\)

Vì\(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y\\\left(y-4\right)^2\ge0;\forall x,y\end{cases}}\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-y\right)^2+\left(y-4\right)^2+2012\ge0+2012;\forall x,y\)

Hay \(P\ge2012;\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)

                        \(\Leftrightarrow x=y=4\)

Vậy MIN P=2012 \(\Leftrightarrow x=y=4\)

12 tháng 8 2018

a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi x = 1

b) \(B=x^2-4x+y^2-8y+6\)

    \(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

    \(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = 2; y = 4

12 tháng 8 2018

a, A = x2 - 2x + 2

       =(x2 -2x + 1) +1

       =(x-1)+ 1 >= 1

Dấu bằng xảy ra <=> (x-1)2 = 0

                         <=> x - 1  = 0

                         <=> x       = 1

Vậy...

b, B = x2 - 4x + y2- 8y + 6

    B =(x2 - 4x + 4) + (y2- 8y + 16) - 14

    B =(x - 2)2 + (y - 4)2 -14 >= -14

Dấu bằng xảy ra + <=> x - 2 = 0

                            <=> x     = 2

                         +  <=> y - 4 = 0      

                             <=> y      = 4

Vậy ...

Bài này dài vc sao làm hết dc.

a: Sửa đề: \(-x^3-12x^2-48x-64\)

\(=-\left(x+4\right)^3\)

\(=-\left(-6+4\right)^3=-\left(-2\right)^3=-\left(-8\right)=8\)

b: \(=8x^3-y^3-8x^3+27y^3=26y^3=26\cdot\left(-3\right)^3=-702\)

c: \(=-\left(4x^4-12x^2y+9y^2\right)\)

\(=-\left(2x^2-3y\right)^2\)

\(=-\left(2x^2-2x-11\right)^2\)

 

2 tháng 11 2018

a) A = (x + 1)(y - 2) - (2 - y)2

= -[(x + 1)(2 - y) + (2 - y)2]

= -[(x + 1 - 2 + y)(2 - y)]

= -[(x - 1 + y)(2 - y)]

= (x - 1 + y)(y - 2)

2 tháng 11 2018

Bài 2:

a) \(A=\left(x+1\right)\left(y-2\right)-\left(2-y\right)^2\)

\(A=\left(x+1\right)\left(y-2\right)-\left(y-2\right)^2\)

\(A=\left(y-2\right)\left(x+1-y+2\right)\)

\(A=\left(y-2\right)\left(x-y+3\right)\)

b) \(B=x^2-6xy+9y^2+4x-12y\)

\(B=\left[x^2-2\cdot x\cdot3y+\left(3y\right)^2\right]+4\left(x-3y\right)\)

\(B=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(B=\left(x-3y\right)\left(x-3y+4\right)\)

Bài 3:

a) \(3\left(x-2\right)\left(x+3\right)-x\left(3x+1\right)=2\)

\(\left(3x^2+3x-18\right)-\left(3x^2+x\right)-2=0\)

\(3x^2+3x-18-3x^2-x-2=0\)

\(2x-20=0\)

\(x=10\)

b) \(6x^2+13x+5=0\)

\(6x^2+10x+3x+5=0\)

\(2x\left(3x+5\right)+\left(3x+5\right)=0\)

\(\left(3x+5\right)\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{-1}{2}\end{cases}}}\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

Những bài này sử dụng những hằng đẳng thức đáng nhớ.

Vì $x=-2$ nên $x+2=0$. Ta có:

\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)

\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)

\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)

\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)

--------------------

\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)

\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)

----------------

Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$

\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)

\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)

\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)

\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)

29 tháng 6 2021

\(a)\)

\(A=2x^2+x\)

\(\Leftrightarrow A=2\left(x+\frac{1}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)

\(MinA=\frac{-1}{8}\)khi \(x=\frac{-1}{4}\)

\(b)\)

\(B=x^2+2x+y^2-4y+6\)

\(\Leftrightarrow B=x^2+2x+1+y^2-4y+4+1\)

\(\Leftrightarrow B=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu '' = '' xảy ra khi: \(x=-1;y=2\)

\(c)\)

\(C=4x^2+4x+9y^2-6y-5\)

\(\Leftrightarrow C=4x^2+4x+1+9y^2-6y+1-7\)

\(\Leftrightarrow C=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

Dấu '' = '' xáy ra khi: \(x=\frac{-1}{2};y=\frac{1}{3}\)

23 tháng 7 2017

giải

A=(3x-5)(2x+11)-(2x+3)(3x+7)

=6x^2+33x-10x-55-(6x^2+14x+9x+21)

=6x^2+33x-10x-55-6x^2-14x-9x-21

= -76

vậy biểu thức không phụ thuộc vào biến x,y

23 tháng 7 2017

B=(2x+3)(4x^2-6x+9)-2(4x^3-1)

=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2

=29

vậy biểu thức không phụ thuộc vào biến x