K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

deo lm dc ns me di can may binh luan ak

NV
24 tháng 10 2019

\(A\le\left|x\right|+\sqrt{2}+\left|y\right|+1=6+\sqrt{2}\)

\(A_{max}=6+\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\le0\\y\le0\\\left|x\right|+\left|y\right|=5\end{matrix}\right.\)

\(A\ge\left|x+y-\sqrt{2}-1\right|\ge4-\sqrt{2}\)

\(A_{min}=4-\sqrt{2}\) khi \(\left\{{}\begin{matrix}x\ge\sqrt{2}\\y\ge1\\x+y=5\end{matrix}\right.\)

2/ \(A\ge\frac{1}{3}\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}\left(xy+yz+zx\right)^2=\frac{1}{3}\)

\(A_{min}=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)

24 tháng 10 2019

làm thế để có dòng đầu tiên ở câu a vậy ạ?

4 tháng 8 2017

a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)

b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)

=(x^2-4x)(x^2-4x+3)

Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4

Dấu= xảy ra khi t=-3/2 >>>tìm x

15 tháng 5 2019

Vì (x−1)2 ≥ 0 ∀ x

(x−3)4 ≥ 0 ∀ x

6(x−1)2(x−2)2 ≥ 0 ∀ x

=> (x−1)2+(x−3)4+6(x−1)2(x−2)2 ≥ 0 ∀ x

=>A≥ 0 ∀ x

=>Amin=0. Dấu "=" xảy ra khi và chỉ khi :

(x−1)2=0⇔x=1 và (x−3)4=0 ⇔ x=3 và 6(x−1)2(x−2)2⇔ x=1 hoặc x=2

Vì x chỉ có 1 giá trị duy nhất trong biểu thức nên x = ∅.

NV
15 tháng 5 2019

Đặt \(x-2=a\Rightarrow\left\{{}\begin{matrix}x-1=a+1\\x-3=a-1\end{matrix}\right.\)

\(A=\left(a+1\right)^4+\left(a-1\right)^4+6\left(a+1\right)^2a^2\)

\(A=a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1+6a^2\left(a-1\right)^2\)

\(A=2a^4+12a^2+6a^2\left(a-1\right)^2+2\ge2\)

\(\Rightarrow A_{min}=2\) khi \(a=0\Leftrightarrow x=2\)

16 tháng 10 2017

Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được       Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán    c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\)\(\Rightarrow x=1\)( thỏa mãn ĐK)

10 tháng 8 2018

như lồn

8 tháng 1 2018

a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :

Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).

8 tháng 1 2018

Sao ko hiện làm lại :

\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8 

8 tháng 1 2018

a) ĐK \(x\ge1\)

với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)

dâu = xảy ra <=>x=1

b)Dặt ...=A

Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)

Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)

tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)

Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)

=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)

Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)

^_^

8 tháng 1 2018

b) Nó ko > = 11/3 =))