Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x}{x-2}=>x.A=\dfrac{x.x}{x-2}=\dfrac{x.x-2.2+4}{x-2}\)
\(\Leftrightarrow x.A=x+2+\dfrac{4}{x-2}=\left(x-2\right)+\dfrac{4}{x-2}+4\)
có \(x>2\Leftrightarrow x-2>0\Rightarrow x-2=\sqrt{\left(x-2\right)^2}\)
\(x.A=\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2+8\)
có \(\left(\sqrt{x-2}-\dfrac{2}{\sqrt{x-2}}\right)^2\ge0\left\{x=4\right\}\)
GTNN x.A =8 khi x =4
\(P=\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)
\(P=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+zy}+\dfrac{z^2}{xz+yz}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow P\ge\dfrac{3}{2}\)
Vậy \(P_{min}=\dfrac{3}{2}\)
Dấu " = " xảy ra khi \(x=y=z\)
bài này \(P\ge\dfrac{3}{2}\) là BĐT Nesbitt có vô vàn cách c/m BĐT này từ cách cấp 1-> cấp 3 bn cần thì IB
còn đây là cách c/m tổng quát có thể áp dụng cho mọi bài cả bài này Here
Có : \(P=\left|x^2-x+1\right|+\left|x^2-x+2\right|\)\(\ge\left|x^2-x+1-x^2+x-2\right|=\left|-1\right|=1\)
Vậy Pmin=1\(\Leftrightarrow\left(x^2-x+1\right)\left(-x^2+x-2\right)\ge0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x+1\ge0\\x^2-x+2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x+1\le0\\x^2-x+2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\in R\\x\in\varnothing\end{matrix}\right.\\\left\{{}\begin{matrix}x\in\varnothing\\x\in R\end{matrix}\right.\end{matrix}\right.\)
Vậy không tồn tại GTNN của P.
\(P=\left|x^2-x+1\right|+\left|x^2-x+2\right|\)
\(P=\left|x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\right|+\left|x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{7}{4}\right|\)
\(P=\left|\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right|+\left|\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right|\)
\(P=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{10}{4}\ge\dfrac{10}{4}=\dfrac{5}{2}\)
\(\Rightarrow P_{min}=\dfrac{5}{2}\) khi \(x=\dfrac{1}{2}\)
Câu 8:
ĐK \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases}}\)
\(A=\frac{x^2}{\left(x-3\right)}.\frac{\left(x-3\right)^2}{x}-4=x\left(x-3\right)-4=x^2-3x-4=\left(x-\frac{3}{2}\right)^2-\frac{25}{4}\\ \)
a) \(A< -6\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{1}{4}< 0\) vô nghiệm
b) A>=-25/4 khi x=3/2
a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)
\(=\dfrac{3}{x-3}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(loại) hoặc x=2(nhận)
Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)
c: Để B=-3/5 thì x-3=-5
=>x=-2(loại)
d: Để B<0 thì x-3<0
=>x<3
Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)
Bài 1:
Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Để tích trên < 0
: \(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm
\(\Rightarrow x^2-10< 0\)và\(x^2-7>0\)
\(\Rightarrow x^2< 10\)và \(x^2>7\)
\(\Rightarrow7< x^2< 10\)
\(\Rightarrow x^2=9\Rightarrow x=+;-3\)
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)
b: 2x^2+x=0
=>x(2x+1)=0
=>x=0(loại) hoặc x=-1/2(nhận)
Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)
c: Để A=1/2 thì -4/x+2=1/2
=>x+2=-2
=>x=-4
\(\dfrac{x^2}{1+x^4}\ge\dfrac{0}{1+x^4}=0\)
GTNN là 0 khi x=0
\(\dfrac{x^2}{1+x^4}\le\dfrac{1}{2}\Leftrightarrow\left(x^2-1\right)^2\ge0\)
GTLN là \(\dfrac{1}{2}\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)