K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

\(A=\dfrac{x^2-2x+2007}{2007x^2}=\dfrac{2006}{2007^2}+\dfrac{x^2-4014x+2007^2}{2007^2x^2}=\dfrac{2006}{2007^2}+\dfrac{\left(x-2007\right)^2}{2007^2x^2}\ge\dfrac{2006}{2007^2}\)

Vậy GTNN là \(A=\dfrac{2006}{2007^2}\) đạt được khi \(x=2007\)

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Leftrightarrow x=2007\)

17 tháng 3 2020

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(A=\frac{x^2-2x.2007-2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(A=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(\Rightarrow Amin=\frac{2006}{2007}\)khi \(x-2007=0\)

\(\Rightarrow x=2007\)

16 tháng 8 2019

\(A=\frac{x^2-2x+2007}{2007x^2}=\frac{2006}{2007^2}+\frac{x^2-4014x+2007^2}{2007^2x^2}=\frac{2006}{2007^2}+\frac{\left(x-2007\right)^2}{2007^2x^2}\ge\frac{2006}{2007^2}\)

Dấu ''='' xảy ra \(\Leftrightarrow\) x = 2007

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}\)

\(=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}\)

\(=\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

A min =\(\frac{2006}{2007}\)khi \(x-2007=0\) hay \(x=2007\)

Bài 2:

\(=x^4-x^3+2007x^2+x^3-x^2+2007x+x^2-x+2007\)

\(=\left(x^2-x+2007\right)\left(x^2+x+1\right)\)

30 tháng 11 2018

\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)

Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)

\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)

12 tháng 6 2018

\(A=\dfrac{2x+1}{x^2+2}\)

*Min A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)

Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

*Max A:

Ta có: \(A=\dfrac{2x+1}{x^2+2}\)

\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)

\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)

\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)

\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)

Vậy \(Max_A=1khi\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

13 tháng 1 2019

Ngoài cách trên , mik xin trình bày cách 2 ạ

ĐKXĐ : x khác 0

\(A=\dfrac{x^2+2x+2018}{x^2}=1+\dfrac{2}{x}+\dfrac{2018}{x^2}\)

Đặt \(\dfrac{1}{x}=a\) , ta có :

\(A=1+2a+2018a^2\)

\(=2018\left(a^2+2a.\dfrac{1}{2018}+\dfrac{1}{2018^2}\right)+\dfrac{2017}{2018}\)

\(=2018\left(a+\dfrac{1}{2018}\right)^2+\dfrac{2017}{2018}\ge\dfrac{2017}{2018}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow a=-\dfrac{1}{2018}\Leftrightarrow\dfrac{1}{x}=-\dfrac{1}{2018}\Leftrightarrow x=-2018\)

Vậy ...

10 tháng 12 2018

\(2018A=\dfrac{2018x^2+2.2018.x+2018^2}{x^2}=\dfrac{2017x^2}{x^2}+\dfrac{x^2+2.2018+2018^2}{x^2}=2017+\dfrac{\left(x+2018\right)^2}{x^2}\ge2017\Rightarrow A\ge\dfrac{2017}{2018}\)

Dấu "=" xảy ra <=> x = -2018