K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|

A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5

Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| \(\ge\) 42

Vậy MinB = 42 khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

\(\ge\) |x+5+7-x| + |x+2+8-x|

\(\ge\) |12| + |10|

\(\ge\) 12 + 10 \(\ge\) 22

Vậy MinC = 22 khi và chỉ khi :

-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|

A = |-x-5|+|x+17| |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 x -5

Vậy MinA=12 khi - 17 x -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥42

Vậy MinB = 42 khi và chỉ khi:

x+8 ≥ 0 ⇒x ≥ −8

x+13 = 0 => x = −13 .Vậy x=-13

x+50 ≥ 0 => x ≥ −50

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

=> |x+5| + |x+2| + |7-x| + |8-x|

|x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22

Vậy MinC = 22 khi và chỉ khi :

-5 x 8 và -2 x 7 -2 x 7

1 tháng 11 2019

Về nhà lm tiếp h sắp chậm học rồi pp nhá.

undefined

1 tháng 11 2019

1.

b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)

Ta có:

\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)

\(\Rightarrow B=42+\left|x+18\right|\ge42\)

\(\Rightarrow MIN_B=42\) khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)

Vậy \(MIN_B=42\) khi \(x=-18.\)

3.

b) \(\left|x-3\right|-\left|2x+1\right|=0\)

\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)

Chúc bạn học tốt!

11 tháng 7 2017

Ta có : \(\frac{x+1}{5}=\frac{x+2}{6}\)

\(\Rightarrow\left(x+1\right)6=5\left(x+2\right)\)

\(\Leftrightarrow6x+6=5x+10\)

\(\Leftrightarrow6x-5x=10-6\)

\(\Rightarrow x=4\)

27 tháng 11 2017

\(\frac{x+1}{2}\)\(\frac{8}{x+1}\) 

x + 1 . x + 1 = 2 . 8

x . 2             = 16

x                  = 16 : 2

x                  = 8

10 tháng 10 2015

Phần c khó để tớ giải cho

12 tháng 8 2019

a

\(\frac{1}{2}-\left|x+\frac{1}{5}\right|=\frac{1}{3}\)

\(\Leftrightarrow\left|x+\frac{1}{5}\right|=\frac{1}{6}\)

TH1:

\(x+\frac{1}{5}=\frac{1}{6}\)

\(\Leftrightarrow x=-\frac{1}{30}\)

TH2:

\(x+\frac{1}{5}=-\frac{1}{6}\)

\(\Leftrightarrow x=-\frac{11}{30}\)

b

Tham khảo cách giải tại đây nhé.Mặc dù ko đúng đề đâu,nhưng dạng là vậy.

Câu hỏi của Best Friend Forever

c.

\(\frac{x}{2}=\frac{y}{3}=600\)

\(\Rightarrow x=1200;y=1800\)

d

\(3^x+4^x=5^x\)

\(\Leftrightarrow\frac{3^x}{5^x}+\frac{4^x}{5^x}=1\)( 1 )

Xét x=1 và x=0 không thỏa mãn ( 1 )

Xét x=2 thì thỏa mãn ( 1 )
Với x>2 ta có:

\(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2;\left(\frac{4}{5}\right)^2< \left(\frac{4}{5}\right)^2\)

\(\Rightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x< 1\left(KTM\right)\)

Vậy x=2

P/S:Độ ni tính hay sai lắm nha,nhưng cách lm là vậy.

12 tháng 8 2019

A=1/13 - 1/15 + 1/15 - 1/22 + 1/22 - 1/39

A=1/13 - 1/39

A=3/39 -1/39

A=2/39

8 tháng 8 2019

c) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)

\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

\(\Leftrightarrow x-2010=0\)

\(\Leftrightarrow x=0+2010\)

\(\Rightarrow x=2010\)

Vậy \(x=2010.\)

Mình chỉ làm câu c) thôi nhé.

Chúc bạn học tốt!