Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
\(M=\left(x-2020\right)^4+\left(x+y+1\right)^2+5\)
Ta có: \(\left(x-2020\right)^4\ge0\forall x;\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2+5\ge5\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2020=0\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2020\\y=-2021\end{cases}}}\)
Vậy GTNN của M = 5 khi x = 2020; y = - 2021
a) \(A=x^2-2x+5\)
\(A=x^2-2x+1+4\)
\(A=\left(x-1\right)^2+4\)
Có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
Vậy: \(Min_A=4\) tại \(x=1\)
b) \(B=x^2+x+1\)
\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)
c) \(C=4x-x^2+3\)
\(C=-x^2+4x-4+8\)
\(C=8-\left(x^2-4x+4\right)\)
\(C=8-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)
Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_C=8\) tại \(x=2\)
Bài 1:
a: \(=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\)
Dấu '=' xảy ra khi x=3/2
b: \(=4x^2-4x+1+x^2+4x+4=5x^2+5>=5\)
Dấu '=' xảy ra khi x=0
Bài 2:
a: \(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)=-\left(x-1\right)^2+5< =5\)
Dấu = xảy ra khi x=1
b: \(=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4< =4\)
Dấu '=' xảy ra khi x=2
\(A=x^2+2x+6\)
\(=x^2+2x+1+5\)
\(=\left(x^2+2x+1\right)+5\)
\(=\left(x+1\right)^2+5\)
Ta có :
\(\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+1\right)^2+5\ge5\) với mọi x
Dấu = xảy ra khi \(\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(Min_A=5\) khi \(x=-1\)
\(x^2+2x+6\\ \\ =x^2+2x+1+5\\ =\left(x^2+2x+1\right)+5\\ \\ =\left(x+1\right)^2+5\\ Do\left(x+1\right)^2\ge0\forall x\\ \Rightarrow\left(x+1\right)^2+5\ge5\forall x\)
Dấu “=” xảy ra khi :
\(\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\)
Vậy \(GTLN\) của biểu thức là \(5\) khi \(x=-1\)
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
Đặt \(kk=x^2+x+5\)
\(kk=\left(x^2+x+\frac{1}{4}\right)+\frac{19}{4}\)
\(kk=\left(x+\frac{1}{2}\right)^2+\frac{19}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow kk\ge\frac{19}{4}\)
Dấu "=" xảy ra khi :
\(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy ...
Đặt \(A=x^2+x+5\)
\(A=\text{[}x^2+x+\left(\frac{1}{2}\right)^2\text{]}+4,75\)
\(A=\text{ }\left(x+\frac{1}{2}\right)^2+4,75\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\)\(\Rightarrow\text{ }\left(x+\frac{1}{2}\right)^2+4,75\ge4,75\)
\(A=4,75\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy Amin= 4,75 \(\Leftrightarrow\)\(x=\frac{-1}{2}\)