Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)
Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)
\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)
Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
1)???
2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Vậy GTNN của A là 2 tại x=2.
3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)
\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)
Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)
\(A=\dfrac{2x+1}{x^2+2}\)
*Min A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{\left(x^2+4x+4\right)-\left(x^2+2\right)}{2\left(x^2+2\right)}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x^2+1\right)}+\dfrac{1}{2}\ge\dfrac{1}{2},\forall x\in R\)
Vậy \(Min_A=\dfrac{1}{2}khi\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
*Max A:
Ta có: \(A=\dfrac{2x+1}{x^2+2}\)
\(=\dfrac{x^2+2-x^2+2x-1}{x^2+2}\)
\(=\dfrac{(x^2+2)-(x^2-2x+1)}{x^2+2}\)
\(=\dfrac{x^2+2}{x^2+2}-\dfrac{\left(x-1\right)^2}{x^2+2}\)
\(=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le0,\forall x\in R\)
Vậy \(Max_A=1khi\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(P=\dfrac{x^2+2x-9}{x-3}=x+5+\dfrac{6}{x-3}=x-3+\dfrac{6}{x-3}+8\)
\(\Rightarrow P\ge2\sqrt{\left(x-3\right).\dfrac{6}{\left(x-3\right)}}+8=8+2\sqrt{6}\)
\(\Rightarrow P_{min}=8+2\sqrt{6}\) khi \(\left(x-3\right)^2=6\Rightarrow x=3+\sqrt{6}\)
bạn có thể làm đầy đủ cho mik hiểu đc k
bắt đầu từ dòng thứ 2 mik đã k hiểu r
\(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(2A=4x^2+18y^2-12xy-12x-24y+4036\)
\(2A=\left(4x^2-12xy+9y^2\right)-12x-24y+9y^2+4036\)
\(2A=\left(2x-3y\right)^2-6\left(2x-3y\right)+9+\left(9y^2-42y+49\right)+3975\)
\(2A=\left(2x-3y-3\right)^2+\left(3y-7\right)^2+3975\ge3975\)
\(\Rightarrow A\ge\frac{3975}{2}\) Dấu "=" xảy ra tại \(y=\frac{7}{3};x=5\)
Em sai từ dòng thứ 3 xuống dòng thứ 4
4036 = 9+49 + 3975 ???
Điều đó dẫn đến kết quả của em sai. Kiểm tra lại nhé Khải!
Ngoài cách trên , mik xin trình bày cách 2 ạ
ĐKXĐ : x khác 0
\(A=\dfrac{x^2+2x+2018}{x^2}=1+\dfrac{2}{x}+\dfrac{2018}{x^2}\)
Đặt \(\dfrac{1}{x}=a\) , ta có :
\(A=1+2a+2018a^2\)
\(=2018\left(a^2+2a.\dfrac{1}{2018}+\dfrac{1}{2018^2}\right)+\dfrac{2017}{2018}\)
\(=2018\left(a+\dfrac{1}{2018}\right)^2+\dfrac{2017}{2018}\ge\dfrac{2017}{2018}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow a=-\dfrac{1}{2018}\Leftrightarrow\dfrac{1}{x}=-\dfrac{1}{2018}\Leftrightarrow x=-2018\)
Vậy ...
\(2018A=\dfrac{2018x^2+2.2018.x+2018^2}{x^2}=\dfrac{2017x^2}{x^2}+\dfrac{x^2+2.2018+2018^2}{x^2}=2017+\dfrac{\left(x+2018\right)^2}{x^2}\ge2017\Rightarrow A\ge\dfrac{2017}{2018}\)
Dấu "=" xảy ra <=> x = -2018