K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

17 tháng 4 2022

undefined

9 tháng 10 2020

Câu 1:

\(a^3+a^2b-ab^2-b^3\)

\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-b^2\right)\)

\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\left(a-b\right)\)

9 tháng 10 2020

Câu 2:

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)

\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)

\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)

\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)

\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

2 tháng 3 2017

\(P=\frac{a^3}{a^2+2b^2}+\frac{b^3}{b^2+2a^2}\)
\(\Leftrightarrow P=a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+2b^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\\b^2+2a^2\ge2\sqrt{2a^2b^2}=2ab\sqrt{2}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{2ab^2}{a^2+2b^2}\le\frac{2ab^2}{2ab\sqrt{2}}=\frac{b}{\sqrt{2}}\\\frac{2a^2b}{b^2+2a^2}\le\frac{2a^2b}{2ab\sqrt{2}}=\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{2ab^2}{a^2+2b^2}\ge a-\frac{b}{\sqrt{2}}\\b-\frac{2a^2b}{b^2+2a^2}\ge b-\frac{a}{\sqrt{2}}\end{cases}}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge a+b-\left(\frac{a+b}{\sqrt{2}}\right)\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\)

Ta có  \(\sqrt{\left(a+2\right)\left(b+2\right)}\ge9\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow9\le\sqrt{\left(a+2\right)\left(b+2\right)}\le\frac{a+b+4}{2}\)

\(\Rightarrow9\le\frac{a+b+4}{2}\)

\(\Rightarrow a+b\ge14\)

\(\Rightarrow\frac{\left(2-\sqrt{2}\right)\left(a+b\right)}{2}\ge14-7\sqrt{2}\)

\(\Rightarrow a-\frac{2ab^2}{a^2+2b^2}+b-\frac{2a^2b}{b^2+2a^2}\ge14-7\sqrt{2}\)

\(\Rightarrow P\ge14-7\sqrt{2}\)

Vậy GTNN của \(P=14-7\sqrt{2}\)