\(P=\frac{yz\sqrt{x-1}+xz\sqrt{y-z}+xy\sqrt{z-2}}{xyz}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

Đề có vấn dề thì phải  căn thứ 2 ấy

Bài này CHTT  có thìphair

27 tháng 5 2018

Nhân thêm và, dùng Cauchy

\(1\sqrt{x-1}=\sqrt{1\left(x-1\right)}\le\frac{x}{2}\). Tương tự với y thì nhân 2; với z thì nhân 3

3 tháng 9 2018

\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Ta có: \(\sqrt{x-1}\le\frac{1+x-1}{2}=\frac{x}{2}\)

\(\Rightarrow\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)

Chứng minh tương tự ta được: \(\frac{\sqrt{y-2}}{y}\le\frac{1}{2\sqrt{2}}\)

                                                 \(\frac{\sqrt{z-3}}{z}\le\frac{1}{2\sqrt{3}}\)

Suy ra: \(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\)

Vậy GTLN của biểu thức = \(\frac{1}{2}.\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

16 tháng 7 2016

Bài toán thiếu điều kiện \(x\ge1;y\ge2;z\ge3\)

Ta có : \(M=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Áp dụng bđt Cauchy, ta có : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{x}{2x}=\frac{1}{2}\)

Tương tự : \(\frac{\sqrt{y-2}}{y}=\frac{\sqrt{\left(y-2\right).2}}{\sqrt{2}.y}\le\frac{y-2+2}{2\sqrt{2}.y}=\frac{y}{2\sqrt{2}y}=\frac{1}{2\sqrt{2}}\)

\(\frac{\sqrt{z-3}}{z}=\frac{\sqrt{\left(z-3\right).3}}{\sqrt{3}z}\le\frac{z-3+3}{2\sqrt{3}z}=\frac{z}{2\sqrt{3}z}=\frac{1}{2\sqrt{3}}\)

Cộng các bđt theo vế , được : \(M\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}z-3=3\\y-2=2\\x-1=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy giá trị lớn nhất của M bằng \(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi và chỉ khi (x;y;z) = (2;4;6)

17 tháng 10 2019

\(P=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

\(=\frac{2\sqrt{1.\left(x-1\right)}}{2x}+\frac{2\sqrt{2.\left(y-2\right)}}{2y\sqrt{2}}+\frac{2\sqrt{3.\left(z-3\right)}}{2z\sqrt{3}}\)

\(\le\frac{1+x-1}{2x}+\frac{2+y-2}{2y\sqrt{2}}+\frac{3+z-3}{2z\sqrt{3}}\)(cái này của BĐT cô-si thì phải)

\(=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=x-1\\2=y-2\\3=z-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Vậy \(Min_{bt}=\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi \(\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

23 tháng 5 2021

Ta có \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\left(x,y,z>0\right)\).

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\).

\(P=\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+y^2}\right)\)\(\left(x,y,z>0\right)\).

Ta có: 

\(\sqrt{2y^2+2yz+2z^2}=\sqrt{\frac{5}{4}\left(y^2+2yz+z^2\right)+\frac{3}{4}\left(y^2-2yz+z^2\right)}\)

\(=\sqrt{\frac{5}{4}\left(y+z\right)^2+\frac{3}{4}\left(y-z\right)^2}\).

Ta có:

\(\frac{3}{4}\left(y-z\right)^2\ge0\forall y;z>0\).

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2\ge\frac{5}{4}\left(y+z\right)^2\forall y;z>0\).

\(\Rightarrow\sqrt{\frac{3}{4}\left(y-z\right)^2+\frac{5}{4}\left(y+z\right)^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y,z>0\).

\(\Leftrightarrow\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}\left(y+z\right)\forall y;z>0\).

\(\Leftrightarrow x\sqrt{2y^2+yz+2z^2}\ge\frac{\sqrt{5}}{2}x\left(y+z\right)\forall x;y;z>0\left(1\right)\).

Chứng minh tương tự, ta được:

\(y\sqrt{2x^2+xz+2z^2}\ge\frac{\sqrt{5}}{2}y\left(x+z\right)\forall x;y;z>0\left(2\right)\).

Chứng minh tương tự, ta được:

\(z\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}z\left(x+y\right)\forall x;y;z>0\left(3\right)\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\)\(\ge\)\(\frac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]=\sqrt{5}\left(xy+yz+zx\right)\).

\(\Leftrightarrow\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2z^2+zx+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)\(\ge\)\(\frac{\sqrt{5}\left(xy+yz+zx\right)}{xyz}=\sqrt{5}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

\(\Leftrightarrow P\ge\frac{\sqrt{5}}{3}.3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\)

\(\left(4\right)\).

Vì \(x,y,z>0\)nên áp dụng bất đẳng thức Bu-nhi-a-cốp-xki, ta được:
\(\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\)\(\left(1.\frac{1}{\sqrt{x}}+1.\frac{1}{\sqrt{y}}+1.\frac{1}{\sqrt{z}}\right)^2\).

\(\Leftrightarrow\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2=1^2=1\)

(vì\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}=1\)).

\(\Leftrightarrow\frac{\sqrt{5}}{3}\left(1^2+1^2+1^2\right)\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{1}{\sqrt{y}}\right)^2+\left(\frac{1}{\sqrt{z}}\right)^2\right]\ge\frac{\sqrt{5}}{3}\)\(\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(P\ge\frac{\sqrt{5}}{3}\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\end{cases}}\Leftrightarrow x=y=z=9\).

Vậy \(minP=\frac{\sqrt{5}}{3}\Leftrightarrow x=y=z=9\).

12 tháng 11 2018

\(A=\frac{1}{\sqrt{x^2-xy+y^2}}+\frac{1}{\sqrt{y^2-yz+z^2}}+\frac{1}{\sqrt{z^2-zx+x^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z-x\right)^2+\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{1}{\sqrt{\frac{1}{2}\left(x^2+y^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(y^2+z^2\right)}}+\frac{1}{\sqrt{\frac{1}{2}\left(z^2+x^2\right)}}\)

\(\le\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

1 tháng 7 2016

a) \(M=\sqrt{x-2}+\sqrt{4-x}\)

Nhận xét : \(M\ge0\)

M đạt giá trị lớn nhất <=> \(M^2\)đạt giá trị lớn nhất

Ta có : \(M^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)=4\)

\(\Rightarrow M\le2\)

Dấu đẳng thức xảy ra <=> \(\hept{\begin{cases}2\le x\le4\\\sqrt{x-2}=\sqrt{4-x}\end{cases}\Leftrightarrow x=3}\)

Vậy Max M = 2 <=> x = 3

b) Ta có : \(N=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Mặt khác ta có ; \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)

Tương tự : \(\frac{\sqrt{y-2}}{y}\le\frac{\sqrt{2}}{4};\frac{\sqrt{z-3}}{z}\le\frac{\sqrt{3}}{6}\)

\(\Rightarrow N\le\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu đẳng thức xảy ra <=> \(\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy Max \(N=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)