K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

\(-3x^2-9x+6\)

\(=-3\left(x^2+3x-2\right)\)

\(=-3\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{17}{4}\right)\)

\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

28 tháng 8 2020

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

28 tháng 8 2020

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

28 tháng 10 2020

A = -x2 + 5x + 10

= -( x2 - 5x + 25/4 ) + 65/4

= -( x - 5/2 )2 + 65/4 ≤ 65/4 ∀ x

Dấu "=" xảy ra khi x = 5/2

=> MaxA = 65/4 <=> x = 5/2

B = -3x2 + 9x + 8

= -3( x2 - 3x + 9/4 ) + 59/4

= -3( x - 3/2 )2 + 59/4 ≤ 59/4 ∀ x

Dấu "=" xảy ra khi x = 3/2

=> MaxB = 59/4 <=> x = 3/2

22 tháng 12 2017

\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)

Câu khác giải TT

21 tháng 11 2018

Sửa chút đề nhé! 

Với x khác -5/3

A= (3x^3+5x^2-9x-15):(3x+5)

= [x^2(3x+5)-3(3x+5)]:(3x+5)

 =(x^2-3) (3x+5):(3x+5)

=x^2-3\(\ge-3\)

Dấu '=' xảy ra khi x=0

max A=-3 khi x=0

23 tháng 7 2019

A = 3x2 - 7x + 8 = 3(x2 - 7/3 + 49/36) + 47/12 = 3(x - 7/6)2 + 47/12

Ta luôn có: 3(x - 7/6)2 \(\ge\)\(\forall\)x

=> 3(x - 7/6)2 + 47/12 \(\ge\)47/12 \(\forall\)x

Dấu "=" xảy ra khi: x - 7/6 = 0 <=> x = 7/6

Vậy Min của A = 47/12 tại x = 7/6