K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mk nghĩ điều kiện x>0

 \(M=\frac{x}{\left(x+2018\right)^2}\Rightarrow\frac{1}{M}=\frac{\left(x+2018\right)^2}{x}=\frac{x^2+4036x+2018^2}{x}=x+\frac{2018^2}{x}+4036\)

Áp dụng BĐt cô-si cho hai số dương \(\frac{1}{M}\ge2\sqrt{x\cdot\frac{2018^2}{x}}+4036=4036+4036=8072\)

Nên \(M\le\frac{1}{8072}\Leftrightarrow x=\frac{2018^2}{x}\Leftrightarrow x^2=2018^2\Leftrightarrow x=2018\left(x>0\right)\)

C2 \(M=\frac{x}{\left(x+2018\right)^2}=\frac{x}{x^2+2018^2+4036x}\le\frac{1}{4}\left(\frac{x}{x^2+2018^2}+\frac{1}{4036}\right)\le\frac{1}{4}\left(\frac{x}{2\cdot2018x}+\frac{1}{4036}\right)\)

\(=\frac{1}{4}\cdot\frac{2}{4036}=\frac{1}{8072}\)

C3 \(M=\frac{x}{\left(x+2018\right)^2}=\frac{x}{x^2+4036x+2018^2}\le\frac{x}{2\cdot2018x+4036x}=\frac{x}{x\left(8072\right)}=\frac{1}{8072}\)

Vậy Max M =\(\frac{1}{8072}\Leftrightarrow x=2018\)

Mk nghĩ bạn nên chọn cách 3 là cách đơn giản nhất nhé. Với cả nó cũng không ràng buộc số dương hay âm còn 2 cách còn lại bắt buộc phải là số dương 

25 tháng 10 2016

ko biert lam kho qua

22 tháng 3 2019

\(A=\frac{x}{\left(x+2018\right)^2}\Leftrightarrow\frac{1}{A}=\frac{\left(x+2018\right)^2}{x}\)\(=\frac{x^2+2.2018x+2018^2}{x}\)

\(=x+4036+\frac{2018^2}{x}\)

\(x+\frac{2018^2}{x}\ge2\sqrt{x.\frac{2018^2}{x}=4036}\)

Vậy GTNN của \(\frac{1}{A}\)=4036+4036=8072

Vậy GTLN của A=\(\frac{1}{8072}\)

22 tháng 3 2019

https://hoc24.vn/vip/thanhcuamua

có cho x>0 đâu mak cô si?

NV
23 tháng 3 2019

Với \(x< 0\Rightarrow A< 0\) (1)

Với \(x=0\Rightarrow A=0\) (2)

Với \(x>0\Rightarrow A>0\) (3)

Từ (1), (2), (3) ta thấy GTLN của A nếu có sẽ xảy ra tại các giá trị x dương

Xét \(x>0\) chia cả tử và mẫu của A cho x:

\(A=\frac{x}{x^2+2.2018x+2018^2}=\frac{1}{x+\frac{2018^2}{x}+2.2018}\)

\(\Rightarrow A\le\frac{1}{2\sqrt{x.\frac{2018^2}{x}}+2.2018}=\frac{1}{2.2018+2.1028}=\frac{1}{4.2018}=\frac{1}{8072}\)

\(\Rightarrow A_{max}=\frac{1}{8072}\) khi x=2018

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

19 tháng 9 2018

\(B=\left(x-y-1\right)^2+3\left(y-2\right)^2+2005\text{ }\ge2005\)

\(C=\left(x^2+4x\right)^2-25\ge-25\)

\(2004.2006.\left(2005^2+1\right)=\left(2005-1\right)\left(2005+1\right)\left(2005^2+1\right)\)

\(=\left(2005^2-1\right)\left(2005^2+1\right)=2005^4-1< 2005^4\)

19 tháng 9 2018

bạn có thể giải chi tiết ra hộ mk ko

18 tháng 2 2018

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

17 tháng 2 2018

Tử và mẫu giống nhau mà

4 tháng 6 2019

a)Có A=\(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)(ĐKXĐ \(x\ne2,-2,-1\))

=\(\left(\frac{2-x}{\left(2-x\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}-\frac{x}{\left(2-x\right)\left(2+x\right)}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)

=\(\frac{2-x+2x+4-x}{\left(2-x\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)

=\(\frac{6\left(2-x\right)\left(x+1\right)}{6\left(2-x\right)\left(x+2\right)^2}\)

=\(\frac{x+1}{\left(x+2\right)^2}\)

b)Có A=\(\frac{x+1}{\left(x+2\right)^2}\)

Để A>0 <=> x+1>0 <=>x>-1

c) Có x2+3x+2=0

<=> x2+2x+x+2=0

<=> x(x+2)+(x+2)=0

<=>(x+1)(x+2)=0

<=> x=-1 hoặc x=-2

NV
16 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}2018-x=a\\x-2019=b\end{matrix}\right.\) \(\Rightarrow a+b=-1\Rightarrow b=-1-a\)

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5a=-3b\\3a=-5b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5a=-3\left(-1-a\right)\\3a=-5\left(-1-a\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=3\\2a=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{3}{2}\\a=-\frac{5}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2018-x=\frac{3}{2}\\2018-x=-\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{4033}{2}\\x=\frac{4041}{2}\end{matrix}\right.\)