K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

Ta có: \(B=-\left(2x^2-5x+8\right)\)

 \(\Rightarrow B=-\left[2x^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{27}{4}\)

\(\Rightarrow B=-\left(2x-\frac{5}{4}\right)^2+\frac{27}{4}\)

\(\Rightarrow B=27-\left(2x-\frac{5}{4}\right)^2\)

Vì \(\left(2x-\frac{5}{4}\right)^2\ge0\Rightarrow B\le\frac{27}{4}\)

Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Rightarrow x=\frac{5}{8}\)

Vậy Bmax=\(\frac{27}{4}\) khi \(x=\frac{5}{8}\)

7 tháng 11 2017

-B = 2x^2 - 5x + 8 = 2.(x^2 - 5/2 x + 25/16 ) + 39/8 = 2.(x-5/4)^2 + 39/8 >= 39/8

=> B <= -39/8

Dấu "=" xảy ra <=> x-5/4 = 0 <=> x=5/4

Vậy Max B = -39/8 <=> x=5/4

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

NM
10 tháng 10 2021

ta có:

undefined

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

NV
5 tháng 4 2019

a/ \(x+4y=1\Rightarrow x=1-4y\)

\(A=x^2+4y^2=\left(1-4y\right)^2+4y^2=20y^2-8y+1\)

\(A=20\left(y^2-2.\frac{1}{5}y+\frac{1}{25}\right)+\frac{1}{5}=20\left(y-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

\(\Rightarrow A_{min}=\frac{1}{5}\) khi \(\left\{{}\begin{matrix}y=\frac{1}{5}\\x=1-4y=\frac{1}{5}\end{matrix}\right.\)

b/

\(B=\frac{2x^2+5x+8}{x}=2x+\frac{8}{x}+5\ge2\sqrt{2x.\frac{8}{x}}+5=13\)

\(\Rightarrow B_{min}=13\) khi \(x=2\)

5 tháng 4 2019

Bạn giúp mình nốt câu c và cau d nha:'<

c) C= (2x2 +6x+10)/(x2+3x+3)

d) D= 4x2 +4x +2/x +15; x>0

28 tháng 7 2019

a) Ta có: A = 5x - 2x2 + 1 = -2(x2 - 5/2x + 25/16) +33/8 = -2(x - 5/4)2 + 33/8 

Ta luôn có: -2(x - 5/4)2 \(\le\)0\(\forall\)x

=> -2(x - 5/4)2 + 33/8 \(\le\)33/8\(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

vậy Max của A = 33/8 tại x = 5/4

b) B = (x - 2)(9 - x) = 9x - x2 - 18 + 2x = -(x2 - 11x + 121/4) + 49/4 = -(x - 11/2)2 + 49/4

Ta luôn có: -(x - 11/2)2 \(\le\)\(\forall\)x

=> -(x - 11/2)2 + 49/4 \(\le\)49/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 11/2 = 0 <=> x = 11/2

Vậy Max của B = 49/4 tại x = 11/2

a,  A= -2x2 + 5x + 1

           = -2 ( x2 - 5/2 x ) + 1

            \(=-2\left(x^2-\frac{2.5}{4}x+\frac{25}{16}\right)+\frac{33}{8}\)

          = \(\frac{33}{8}-2\left(x-\frac{5}{4}\right)^2\)\(\le\frac{33}{8}\forall x\)

   Dấu = xảy ra khi x - 5/4=0

                           \(\Rightarrow\)x=5/4

vậy GTLN của A = 33/8 khi x=5/4

b.

B=9x - 18 + 2x - x2    

= -x2 + 11x - 18

= - ( x2 - 11x) -18

= - (x2 - 2.x . 11/2 + 121/4 ) + 49/4

= 49/4 - (x-11/2)2

Dấu = xảy ra khi x-11/2 = 0

suy ra x = 11/2

vậy GTLN của B = 49/4 kgi x=11/2

#mã mã#

1 tháng 11 2020

a) Ta có A = x2 - 2x - 1 = (x2 - 2x + 1) - 2 = (x - 1)2 - 2 \(\ge\) -2 

Dấu "=" xảy ra <=> x - 1 = 0 => x = 1

Vậy Min A = -2 <=> x = 1 

b) Ta có B = 4x2 + 4x + 8 = (4x2 + 4x + 1) + 7 = (2x + 1)2 + 7 \(\ge\)7

Dấu |"=" xảy ra <=> 2x + 1 = 0 => x = -1/2

Vậy Min B = 7 <=> x = -1/2

c) Ta có C = 3x - x2 + 2

                 = -(x2 - 3x - 2)

                = -(x2 - 3x + 9/4 - 9/4 - 2)

                = -[(x - 3/2)2 - 17/4)

                 = -(x - 3/2)2 + 17/4 \(\le\frac{17}{4}\)

Dấu "=" xảy ra <=> x - 3/2 = 0 => x = 3/2

Vậy Max C = 17/4 <=> x = 3/2

d) Ta có D = -x2 - 5x = -(x2 + 5x) = -(x2 + 5x + 25/4 - 25/4) = -(x + 5/2)2 + 25/4 \(\ge\frac{25}{4}\)

Dấu "=" xảy ra <=> x + 5/2 = 0 => x = -5/2

Vậy Max D = 25/4 <=> x = -5/2

e) Ta có E = x2 - 4xy + 5y2 + 10x - 22y + 28

                  = (x2 - 4xy + 4y2) + 10x - 20y + y2 - 2y + 28

                 = (x - 2y)2 + 10(x - 2y) + 25 + (y2 - 2y + 1) + 2

                 = (x - 2y + 5) + (y - 1)2 + 2 \(\ge\)2

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min E = 2 <=> x = -3 ; y = 1

DD
2 tháng 11 2020

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\ge-2\)

Dấu \(=\)xảy ra khi \(x=1\). Vậy GTNN của \(A\)là \(-2\).

\(B=4x^2+4x+8=4x^2+4x+1+7=\left(2x+1\right)^2+7\ge7\)

Dấu \(=\)xảy ra khi \(x=\frac{-1}{2}\). Vậy GTNN của \(B\)là \(7\).

\(C=-x^2+3x+2=-x^2+2.\frac{3}{2}x-\left(\frac{3}{2}\right)^2+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)

Dấu \(=\) xảy ra khi \(x=\frac{3}{2}\). Vậy GTLN của \(C\)là \(\frac{17}{4}\).

\(D=-x^2-5x=-x^2-2.\frac{5}{2}x-\left(\frac{5}{2}\right)^2+\frac{25}{4}=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu \(=\)xảy ra khi \(x=\frac{-5}{2}\). Vậy GTLN của \(D\) là \(\frac{25}{4}\).

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+25-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\). Vậy GTNN của \(E\) là \(2\).