\(\left|x-1\right|+x+3\)

2, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2

4 tháng 8 2017

a, A =I x - 3I +10

\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc  bằng 0 vs mọi x)

Dấu ''='' xảy ra khi x-3=0

                       <=>x = 3

Vậy giá trị nhỏ nhất của A là 10 khi x = 3

b, \(B=-7+\left(x-1\right)^2\)

\(\Rightarrow B\ge-7\forall x\)

Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

Vậy giá trị nhỏ nhất của B là -7 khi x=1

c, C= -3 - I x -2I

\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2 

Vây giá trị lớn nhất của C là - 3 khi x = 2.

d, \(D=15-\left(x-2\right)^2\)

\(\Rightarrow D\le15\)

Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2

Vây giá trị lớn nhất của D là 15 khi x = 2

11 tháng 8 2020

c,\(43+x=2.5^2-\left(x-57\right)\)

\(< =>43+x=50-x+57\)

\(< =>2x=50+57-43\)

\(< =>x=\frac{107-43}{2}=32\)

d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)

\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)

\(< =>-12x+60+21-7x=5\)

\(< =>-19x=5-81=-76\)

\(< =>x=-\frac{76}{-19}=4\)

11 tháng 8 2020

Bài 2: 

a) \(A=\left|x-3\right|+10\)

Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)

hay \(A\ge10\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(minA=10\Leftrightarrow x=3\)

b) \(B=-7+\left(x-1\right)^2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)

hay \(B\ge-7\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=-7\Leftrightarrow x=1\)

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

11 tháng 8 2019

Mình viết đề sai ở câu b

 B = | x +3| +x+7

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ