K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2022

\(M=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1.\)

Ta có: \(\left(x-2\right)^2\ge0\) \(\forall x\in R.\)

           \(1>0.\)

\(\Rightarrow\left(x-2\right)^2+1\ge1.\Rightarrow M\ge1.\)

Dấu \("="\) xảy ra. \(\Leftrightarrow\left(x-2\right)^2+1=1.\Leftrightarrow\left(x-2\right)^2=0.\Leftrightarrow x=2.\)

Vậy GTNN của M = 1 khi x = 2.

11 tháng 1 2022

\(M=x^2-4x+4+1\)=\(\left(x-2\right)^2+1\)

vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2+1\ge1\)

=>\(M\ge1\) dấu''='' xảy ra  khi M = 1<=>x-2=0<=>x=2

kl:\(M_{min}=1\) khi và chỉ khi x =2

 

14 tháng 7 2017

b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)

=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)

Dấu  "=" xảy ra khi \(x=\sqrt{2}+1\)

c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

25 tháng 9 2017

\(M=2x^2-8x+\sqrt{x^2-4x+5}+6\)

\(=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)

Đặt \(\sqrt{x^2-4x+5}=t\)

Ta thấy \(x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x+2\right)^2+1\ge1\)

Vậy nên \(\sqrt{x^2-4x+5}\ge1\Rightarrow t\ge1\)

Khi đó \(M=2t^2+t-4=2\left(t^2+\frac{1}{2}t-2\right)=2\left[\left(t^2+2.t.\frac{1}{4}+\frac{1}{16}\right)-\frac{33}{16}\right]\)

\(=2\left[\left(t+\frac{1}{4}\right)^2-\frac{33}{16}\right]=2\left(t+\frac{1}{4}\right)^2-\frac{33}{8}\)

Do \(t\ge1,\left(t+\frac{1}{4}\right)^2\ge\frac{25}{16}\)

Vậy thì \(M\ge2.\frac{25}{16}-\frac{33}{8}=-1\)

Vậy \(minM=-1\) khi t = 1 

hay \(\sqrt{x^2-4x+5}=0\Rightarrow x^2-4x+5=2\Rightarrow x^2-4x+4=0\Rightarrow x=2\)

24 tháng 10 2016

\(B=x^2-4x+5\)

\(=x^2-2.x.2+2^2+1\)

\(=\left(x+2\right)^2+1\)

Ta có : \(\left(x+2\right)^2\ge0\)

\(\left(x+2\right)^2+1\ge1\)

Dấu " = " xảy ra khi và chỉ khi \(x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy \(Min_A=1\Leftrightarrow x=-2\)

6 tháng 3 2017

bài này sai sao vẫn được hoc24 chọn

24 tháng 10 2016

GTNN  = x^2-4x+4+1

          =(x^2-4x+4)+1

          =(x-2)^2+1 >= 1

Vậy GNNN là 1

16 tháng 9 2018

\(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

Vì: \(\left(x-2\right)^2+1\ge1\forall x\)

=> Giá trị nhỏ nhất của A là 1 tại \(\left(x-2\right)^2=0\Rightarrow x=2\)

=.= hok tốt!!

16 tháng 9 2018

Ta có:\(x^2-4x+5\ge5\forall x\in R\)

Mà: \(x^2-4x+5\ge5\Leftrightarrow x=0\)

Vậy A đạt giá trị nhỏ nhất là 5 khi và chỉ khi x = 0 (hay \(A_{min}=5\Leftrightarrow x=0\))

27 tháng 9 2018

\(Q=x^2-4x+5\)

\(Q=\left(x^2-4x+4\right)+1\)

\(Q=\left(x-2\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTNN của \(Q\) là \(1\) khi \(x=2\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(Q=x^2-4x+5\)

\(=\left(x-2\right)^2+1\ge1\)

Dấu"=" xảy ra khi \(\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy....

-hok tốt-

18 tháng 3 2018

Ta có:\(A=x^2-4x+\frac{1}{x^2-4x+4}+5\)\(=x^2-4x+4+\frac{1}{x^2-4x+4}+1\)

Áp dụng BĐT Cauchy ta có:\(A\ge2\sqrt{\left(x^2-4x+4\right).\frac{1}{x^2-4x+4}}+1=2+1=3\)

\(\Rightarrow GTNN\) của A là 3 đạt được khi \(x^2-4x+4=\frac{1}{x^2-4x+4}\Rightarrow\left(x-2\right)^4=1\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

18 tháng 3 2018

cảm ơn bạn

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(