Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2a-3\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{2a-4\sqrt{a}+\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\\ =2\sqrt{a}+1\)
Áp dụng bđt cosi ta được \(4x+\frac{1}{4x}\ge2\sqrt{4x.\frac{1}{4x}}=2\)
\(x+\frac{1}{4}\ge2\sqrt{\frac{1}{4}x}=\sqrt{x}\Leftrightarrow4x+1\ge4\sqrt{x}\Leftrightarrow4\left(x+1\right)\ge4\sqrt{x}+3\Leftrightarrow-\left(4\sqrt{x}+3\right)\ge-4\left(x+1\right)\Leftrightarrow-\frac{\left(4\sqrt{x}+3\right)}{x+1}\ge-4\)Khi đó \(A\ge2-4+2016=2014\)
Dấu = xảy ra khi x=1/4
ĐKXĐ: \(x\ge1\)
\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=|1-\sqrt{x-1}|+|\sqrt{x-1}+1|\)
\(\ge|1-\sqrt{x-1}+\sqrt{x-1}+1|=2\)
Vậy GTNN của A là 2 khi \(1\le x\le2.\)
Ta có:
\(A=x-\sqrt{x-2016}\\ =x-2016-\sqrt{x-2016}+\dfrac{1}{4}+\dfrac{8023}{4}\\ =\left(\sqrt{x-2016}-\dfrac{1}{2}\right)^2+\dfrac{8023}{4}\ge\dfrac{8023}{4}\)
Do đó:
\(A_{min}=\dfrac{8023}{4}\) tại \(\sqrt{x-2016}=\dfrac{1}{2}\Rightarrow x=\dfrac{8065}{4}\)