Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)
a, Thay x = -2017 vào biểu thức, ta đc
A=|-2017 + 2018| - 107
A=|1| - 107
A=1 - 107
A= -106
Vậy A = -106
b, Ta có:
|x + 2018| - 107 = |-107|
|x + 2018| - 107 = 107
|x + 2018| = 107 + 107
|x + 2018| = 214
Suy ra x + 2018 = 214 hoặc x + 2018 = -214
--Nếu x + 2018 = 214
x = 214 - 2018
x = -1804
--Nếu x + 2018 = -214
x = -214 - 2018
x = -2232
Vậy x = -1804; x = -2232
Chúc bạn học tốt
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)
Vậy với x=4 thì A đạt giá trị nhỏ nhất.
có (x-1)2 >= 0 với mọi x
=> -14+(x-1)2>=-14 với mọi x
dấu '=' xảy ra khi (x-1)2 =0
=>x-1=0
=>x=1
Vậy giá trị nhỏ nhất của A = -14 khi x=1
Với giá trị nào của x,y thì biểu thức : A = \(|x-y|+|x+1|+2016\)đạt giá trị nhỏ nhất. Tìm giá trị đó
Ta có : \(\left|x+1\right|\ge0\forall x\)
Nên : |x + 1| nhỏ nhất bằng 0
<=> x + 1 = 0
=> x = -1
Lại có : \(\left|x-y\right|\ge0\forall x\)
Nên : |x - y| nhỏ nhất bằng 0
=> x - y = 0
mà x = -1
=> -1 - y = 0
=> y = -1
Vậy A = |x - y| + |x + 1| + 2016 nhwor nhất bằng 0 + 0 + 2016
=> A nhở nhất bằng 2016 khi x = y = -1
Ta có: |x-y| >=0 với mọi x,y
|x+1| >=0 với mọi x,y
=> |x-y|+|x+1|+2016 >=2016 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-y\right|=0\\\left|x+1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-1\\x=-1\end{cases}}}\)
Ta có :
\(A=\left|x-2012\right|+\left|x-1\right|=\left|x-2012\right|+\left|1-x\right|\)
Áp dụng bất đẳng thức giá trị tuyệt đối ta có :
\(A=\left|x-2012\right|+\left|1-x\right|\ge\left|x-2010+1-x\right|=\left|-2009\right|=2009\)
Dấu "=" xảy ra khi \(\left(x-2012\right)\left(1-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-2012\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2012\\x\le1\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-2012\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2012\\x\ge1\end{cases}}}\)
\(\Rightarrow\)\(1\le x\le2012\)
Vậy \(A_{min}=2009\) khi \(1\le x\le2012\)
Chúc bạn học tốt ~
vì |x-2012| lớn hơn hoặc bằng 0, |x-1| lớn hơn hoặc bằng 0
=>A lớn hơn hoặc bằng 0=>min A=0
dấu "=" xảy ra<=> |x-2012|=0 hoặc |x-1|=0
<=> x=2012 hoặc x=1