Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) để A nhỏ nhất thì |x+3/5| =2/3
ta có 2 trường hợp:
TH1: x+3/5=2/3 => x=1/15
TH2:x+3/5= -2/3 => x= -19/15
b, để B nhỏ nhất thì |3x-2|=4
ta có 2 trường hợp:
TH1:3x-2=4 =>3x=6 => x=2
TH2:3x-2= -4 => 3x= -2(ko có giá trị thỏa mãn)
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
1.1
a, GTNN của A = 10 <=> x=-3
b, GTNN của B = -7 <=> x = -1
1.2
a,GTLN của C = -3 <=> x = 2
b, GTLN của D = 15 <=> x = 4
k mk nha
a/ Để A nhỏ nhất thì |x-7| là nhỏ nhất
=> |x-7| = 0
Vậy GTNN của A là : 0-1= -1
GTNN của A=-1 khi x=4/3
GTNN của B=-2 khi x=-10
Trị tuyệt đối luộn lớn hơn 0
Nên ta có :
\(A=\)/ 3x - 4 / - 1 \(\ge-1\)
Min A bằng -1 khi và chỉ khi x bằng 4/3
\(B=\)/ x \(+\)10 / - 2 \(\ge-2\)
Min B bằng - 2 khi và chỉ khi x bằng - 10