Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
a.
+) Với x lớn hơn hoặc bằng 0
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)
\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)
Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0
+) Với x < - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)
\(=2020-2x-3-2x=2017-4x\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)
+) Với x = - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)
\(=2020+2+1=2023\left(tm\right)\)
Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
a) A = 2.|3x-2|-1
Ta có: 2.|3x-2| \(\ge\)0.
Dấu "=" xảy ra khi 3x-2=0
=> 3x = 2
=> x = 2/3.
Vậy GTNN của A là -1 khi x = 2/3.
b) B = 5.|1-4x|-1
Ta có: 5.|1-4x|\(\ge\)0.
Dấu "=" xảy ra khi 1-4x=0
=>4x=1
=>x=1/4.
Vậy AMin=-1 khi x = 1/4.
c) C = x2+3.|y-2|-1
Ta có: x2\(\ge\)0; 3.|y-2|\(\ge\)0.
Dấu "=" xảy ra khi x = 0 và y-2=0
=> x = 0 và y = 2.
Vậy CMin=-1 khi x = 0, y = 2.
d) D = x + |x|
Ta có : |x| \(\ge\)0
Dấu "=" xảy ra khi x=0.
Vậy DMin = 0 khi x = 0.
a/
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 <= 25/4
Vậy giá trị lớn nhất là 25/4 khi x=5/2
b/ B=x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4
Vậy giá trị lớn nhất là 1/4 khi x=1/2
c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 <= 1
Vậy lớn nhất là 1 khi x=2
d/-x^2 +6x-11 = -[x^2-6x+11) = -[(x-3)^2 +2] =-(x-3)^2 -2 <= -2
Vậy lớn nhất là bằng -2 khi x=3
e/ 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 <=21
Vay lớn nhất là 21 khi x=-4
f: 4x-x^2+1=-(x^2-4x-1) =-[(x-2)^2 -5] = -(x-2)^2 +5 <= 5
Vậy lớn nhất bằng 5 khi x=2
A = x2 + 4x + 9
= ( x2 + 4x + 4 ) + 5
= ( x + 2 )2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinA = 5 <=> x = -2
B = x2 + 6x + 12
= ( x2 + 6x + 9 ) + 3
= ( x + 3 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinB = 3 <=> x = -3
C = x2 + 3x + 6
= ( x2 + 3x + 9/4 ) + 15/4
= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2
=> MinC = 15/4 <=> x = -3/2
D = x2 + 5x + 10
= ( x2 + 5x + 25/4 ) + 15/4
= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinD = 15/4 <=> x = -5/2
E = 2x2 + 7x + 5
= 2( x2 + 7/2x + 49/16 ) - 9/8
= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x
Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4
=> MinE = -9/8 <=> x = -7/4
F = 3x2 + 8x + 9
= 3( x2 + 8/3x + 16/9 ) + 11/3
= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x
Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3
=> MinF = 11/3 <=> x = -4/3
a: \(A=\left|3x-15\right|+\left|29+3x\right|\)
\(\Leftrightarrow A>=\left|3x-15-29-3x\right|=44\)
Dấu '=' xảy ra khi 3x+29>=0 và 3x-15<=0
=>-29/3<=x<=5
b: \(B=\left|4x-5\right|+\left|4x+83\right|>=\left|4x-5-4x-83\right|=88\)
Dấu '=' xảy ra khi 4x+83>=0 và 4x-5<=0
=>-83/4<=x<=5/4