Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2.\)với mọi x
GTNN \(\sqrt{x^2+2x+5}=2\)khi x = -1
\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge2\) với x=-1
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1
Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)
Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)
\(M=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)
\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)
\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)
\(\Leftrightarrow M^2\le25\)
\(\Leftrightarrow-5\le M\le5\)
Bài làm:
Ta có: \(M=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)
Mà \(\left(x+1\right)^2+4\ge4\left(\forall x\right)\)
=> \(M\ge2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy \(M_{Min}=2\Leftrightarrow x=-1\)
\(M=\sqrt{x^2+2x+5}\)
\(\Leftrightarrow M=\sqrt{x^2+2x+1+4}\)
\(\Leftrightarrow M=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Min M = 2
\(\Leftrightarrow x=-1\)
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)
\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)
b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)
c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
\(M=\sqrt{x^2-2x+11}\)
\(=\sqrt{x^2-2x+1+10}\)
\(=\sqrt{\left(x-1\right)^2+10}\)
Nhận thấy (x - 1)2 \(\ge0\)
=> (x - 1)2 + 10 \(\ge10\)
=> \(\sqrt{\left(x-1\right)^2+10}\ge\sqrt{10}\)
=> Min M = \(\sqrt{10}\)
Dấu "=" xảy ra <=> x - 1 = 0
<=> x = 1
Vậy Min M = \(\sqrt{10}\)khi x = 1
M nhỏ nhất khi \(x^2-2x+11\)nhỏ nhất.
Mà \(x^2-2x+11=\left(x^2-2x+1\right)+10=\left(x-1\right)^2+10\)
Lại có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+10\ge10\Leftrightarrow x^2-2x+11\ge10\)(đẳng thức xảy ra khi x = 1)
Do đó \(min_{x^2-2x+11}=10\Leftrightarrow x=1\)
Khi đó \(M=\sqrt{x^2-2x+11}=\sqrt{10}\)
Vậy GTNN của M là 10 khi x = 1.
\(\sqrt{\left(x^2+2x+1\right)+4}=\sqrt{\left(x+1\right)^2+4}\supseteq\sqrt{4}=2\)
=> min M=2 => x=-1