\(\frac{2011}{2012-\left|x-2010\right|}\)

Cần...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

đk : \(\left|x-2010\right|\ne2012\)

\(B=\frac{2011}{2012-\left|x-2010\right|}\)

có : \(2011>0\)

để B đạt gtnn thì 2012 - |x - 2010| lớn nhất

mà |x - 2010| > 0

=> 2012 - |x - 2010| = 1

=> |x - 2010| = 2011  

=> x - 2010 = 2011 hoặc x - 2010 = -2011

=> x = 4021 hoặc x = -1

23 tháng 12 2017

Với \(\forall x\) ta có :

\(B=\left|x-2010\right|+\left|x-2011\right|+\left|x-2012\right|\)

\(\Leftrightarrow B=\left|x-2010\right|+\left|2011-x\right|+\left|x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+\left|2011-x+x-2012\right|\)

\(\Leftrightarrow B\ge\left|x-2010\right|+1\)

Lại có : \(\left|x-2010\right|\ge0\)

\(\Leftrightarrow\left|x-2010\right|+1\ge1\)

Dấu "=" xảy ra khi \(\Leftrightarrow\left|x-2010\right|=0\)

\(\Leftrightarrow x=2010\)

Vậy \(A_{Min}=1\Leftrightarrow x=2010\)

23 tháng 12 2017

Mà t nhớ bài sai CTV đc phép xóa thì phải :v

23 tháng 12 2017

ta có \(B=\left|x-2010\right|+\left|2012-x\right|+\left|x-2011\right|\)

Áp dụng bđt chưa dấu giá trị tuyệt đó ts có

\(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=2\)

mà \(\left|x-2011\right|\ge0\)

Cộng hết vào => B\(\ge2\)

dấu = xảy ra <=> x=2011

25 tháng 12 2017

Ta có

|x−2010|\(\ge\)0 với mọi x

=>2012-|x−2010|\(\ge\)2012 với mọi x

=>C\(\ge\)\(\dfrac{1}{2012}\)với mọi x

Dấu bằng xảy ra <=>|x−2010|=0

<=>x-2012=0

<=>x=2012

Vậy Cmin=\(\dfrac{1}{2012}\)<=>x=2012

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

7 tháng 6 2020

íu chét :< sửa là ≥ | - 1| nhé!!

29 tháng 3 2019

Vì |x-2010|\(\ge\)0

(y+2011) 2010\(\ge\)0

=>|x-2010|+(y+2011) 2010\(\ge\)0

=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011

Dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0

<=>x=2010 và y=-2011

Vậy Amin=2011 khi x=2010 và y=-2011

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

Ta thấy:

\(|x-2010|\geq 0, \forall x\in\mathbb{R}\)

\((y+2011)^{2010}=[(y+2010)^{1005}]^2\geq 0, \forall y\in\mathbb{R}\)

\(\Rightarrow A=|x-2010|+(y+2011)^{2010}+2011\geq 0+0+2011=2011\)

Vậy GTNN của $A$ là $2011$.

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-2010=0\\ y+2011=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2010\\ y=-2011\end{matrix}\right.\)

5 tháng 6 2016

Đáy lớn là

26 + 8 = 34 M

chIỀU CAO là

26 - 6 = 20 m

Diện tích thửa ruộng là

{ 34 + 26 } x 20 : 2 = 800 m2

Đáp số 800 m2

5 tháng 6 2016

1.Để H đạt GTLN

=>|8x+16|+1 đạt giá trị dương nhỏ nhất

=>|8x+16|+1=1

=>MaxH=1

Dấu "=" xảy ra khi x=-2

Vậy...

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)