\(\frac{x^2-4x+1}{x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2020

jack tuổi lồn

25 tháng 1 2020

Ta có: \(A=\frac{x^2-4x+1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}=\left(\frac{1}{x}-2\right)^2-3\ge3\left(\forall x\right)\)

\(\Rightarrow Min_A=-3\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

18 tháng 3 2018

Ta có:\(A=x^2-4x+\frac{1}{x^2-4x+4}+5\)\(=x^2-4x+4+\frac{1}{x^2-4x+4}+1\)

Áp dụng BĐT Cauchy ta có:\(A\ge2\sqrt{\left(x^2-4x+4\right).\frac{1}{x^2-4x+4}}+1=2+1=3\)

\(\Rightarrow GTNN\) của A là 3 đạt được khi \(x^2-4x+4=\frac{1}{x^2-4x+4}\Rightarrow\left(x-2\right)^4=1\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

18 tháng 3 2018

cảm ơn bạn

NM
7 tháng 2 2021

ta có 

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\)

\(\Leftrightarrow\Delta'=4-A.\left(A-3\right)\ge0\Leftrightarrow A\in\left[-1;4\right]\)

Do đó giá trị nhỏ nhất của A là -1 khi x=2

7 tháng 2 2021

*nháp

Ta có: \(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+A=3-4x\Leftrightarrow Ax^2+4x+\left(A-3\right)=0\)

\(\Delta=4^2-4A\left(A-3\right)=-4A^2+12A+16\ge0\)

\(\Leftrightarrow A^2-3A-4\le0\Leftrightarrow\left(A^2+A\right)-\left(4A+4\right)\le0\)

\(\Leftrightarrow\left(A+1\right)\left(A-4\right)\le0\Rightarrow4\ge A\ge-1\)

Khi đó Min(A) = -1

Bài làm:

Ta có: \(A=\frac{3-4x}{x^2+1}=\frac{\left(x^2-4x+4\right)-x^2-1}{x^2+1}=\frac{\left(x-2\right)^2}{x^2+1}-1\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: x = 2

Vậy Min(A) = -1 khi x = 2

2 tháng 12 2019

\(P=\frac{3-4x}{1+x^2}\)đạt gtnn 

\(P=x^2-1\)

\(\Rightarrow-x^2+p+1=0\)

\(\Rightarrow x=\sqrt{p+1}\)

\(\Rightarrow x=-\sqrt{p+1}\)

\(x=\sqrt{p+1}\)

Vậy GTNN \(\hept{\begin{cases}x=-\sqrt{p+1}\\x=\sqrt{p+1}\end{cases}}\)

\(x=\perp\sqrt{p+1}\)

14 tháng 7 2017

b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)

=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)

Dấu  "=" xảy ra khi \(x=\sqrt{2}+1\)

c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)

\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)

Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4

31 tháng 12 2018

M xác định

\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x^2-x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\left(x-1\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne0;x\ne1\end{cases}}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

Vậy ĐKXĐ của M là \(\hept{\begin{cases}x\ne1\\x\ne0\end{cases}}\)

\(M=\frac{3}{x-1}+\frac{1}{x^2-x}=\frac{3}{x-1}+\frac{1}{x\left(x-1\right)}=\frac{3x}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}=\frac{3x+1}{x\left(x-1\right)}\)

Thay x=5 ta có: 

\(M=\frac{3.5+1}{5\left(5-1\right)}=\frac{15+1}{5.4}=\frac{16}{20}=\frac{4}{5}\)

Vậy \(M=5\)tại  x=5

31 tháng 12 2018

\(M=0\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=0\Leftrightarrow3x+1=0\Leftrightarrow x=-\frac{1}{3}\)( thỏa mãn đkxđ)

Vậy với \(x=-\frac{1}{3}\)thì \(M=0\)

\(M=-1\)

\(\Leftrightarrow\frac{3x+1}{x\left(x-1\right)}=-1\Leftrightarrow3x+1=-x^2+x\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy với \(x=-1\)thì \(M=-1\)

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(

27 tháng 2 2019

giải pt nha

nhìn lộn đầu bài

27 tháng 2 2019

Bé Chanh ở nhà cày rank đi, hok Toán làm gì