K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

có  A = \(a^4-2a^3+3a^2-4a+5\)

 \(\Leftrightarrow A=\left(a^2\right)^2-2a^2.a+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+\left(\sqrt{2}.a-\sqrt{2}\right)^2+3\)

\(\Rightarrow\) A luôn luôn lớn hơn hoặc bằng 3 với mọi giá trị của x 

=> giá trị nhỏ nhất của A = 3 khi

\(\left(a^2-a\right)^2=0\) \(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\) )

\(\Rightarrow\) a= 0 hoặc a= 1

 

29 tháng 10 2015

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3 = (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1

Vậy Min A = 3 tại a = 1

29 tháng 12 2017
  1. Biến đổi: a4-2a3+a2+2a2-4a+2+3=(a2-a)2+2(a-1)2+3>=3=>Amin=3<=>x=1
  2.  
30 tháng 5 2017

\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)

\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)

Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).

9 tháng 6 2019

\(a^4-2a^3+3a^2-4a+5\)

\(=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra khi a = 1 

Vậy với a = 1 thì \(A_{Min}=3\)

8 tháng 4 2018

\(A=a^4-2a^3+3a^2-4a+5\)

\(A=\left(a^4-2a^3+a^2\right)+\left(2a^2-4a+2\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a^2-1\right)+3\ge3\)

\(\Leftrightarrow Min_A=3\) khi \(a=1\)

8 tháng 1 2020

đây là theo ý mk nha. ko chắc chắn lắm 

ko vt lại đề

A=(a4-2a3+a2) +(2a2-4a+2)+3

A=(a2-a)2+ 2(a-1)2 +3 > hoặc = 3

Dấu = xảy ra <=> a=1

21 tháng 12 2018

chịu rồi bạn ạ

21 tháng 12 2018

\(Taco:\)

\(A=2\left(3x+1\right)\left(x-1\right)-3\left(2x-3\right)\left(x-4\right)\)

\(A=\left(6x+2\right)\left(x-1\right)-\left(6x-9\right)\left(x-4\right)\)

\(A=\left(6x^2-4x-2\right)-\left(6x^2-24x-9x-36\right)\)

\(A=6x^2-4x-2-6x^2+33x+36=29x+34\)

\(b,x=2\Rightarrow A=58+34=92\)

\(A=-20\Leftrightarrow29x=-20-34=-54\Leftrightarrow x=\frac{-54}{29}\)

\(x^2\ge0.\Rightarrow A+x^2=x\left(x+29\right)+34\ge-176,25\)

Dấu "=" xảy ra khi: x(x+29) đạtGTNN

<=> x=-14,5

\(D=\left(\left(a^2\right)^2-2a^2.a+a^2\right)+3\left(a^2-2a+1\right)+5\)

\(=\left(a^2-a\right)^2+3\left(a-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi \(a=1\)

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...