\(|x-500|+|x-300|\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

\(A=\left|x-500\right|+\left|x-300\right|\)

\(A=\left|500-x\right|+\left|x-300\right|\ge\left|500-x+x-300\right|=200\)

Tự làm nốt nha !!

4 tháng 9 2020

\(A=\left|x-500\right|-\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\)

\(\Rightarrow A\ge\left|x-500+300-x\right|=200\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-500\ge0\\300-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-500\le0\\300-x\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge500\\x\le300\end{cases}}\left(vo-ly\right)\) hoặc \(\hept{\begin{cases}x\le500\\x\ge300\end{cases}}\)

Vậy minA = 200 \(\Leftrightarrow300\le x\le500\)

6 tháng 8 2018

Bài 1:

\(A=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\)

                                                    \(\ge\left|x-500+300-x\right|=200\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-500\right).\left(300-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-500\ge0\\300-x\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-500\le0\\300-x\le0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge500\\x\le300\end{cases}}\)   hoặc \(\Leftrightarrow\hept{\begin{cases}x\le500\\x\ge300\end{cases}}\) (vô lí)

Nên \(300\le x\le500\)

Vậy Amin = 200 khi và chỉ khi \(300\le x\le500\)

27 tháng 9 2017

Ta có: \(\left\{{}\begin{matrix}\left|x-500\right|=\left|500-x\right|\ge500-x\\\left|x-300\right|\ge x-300\end{matrix}\right.\)

\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge\left(500-x\right)+\left(x-300\right)\)

\(\Rightarrow A\ge500-x+x-300=500-300\)

\(\Rightarrow A\ge200\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left|500-x\right|=500-x\\\left|x-300\right|=x-300\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}500-x\ge0\\x-300\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le500\\x\ge300\end{matrix}\right.\)

\(\Leftrightarrow300\le x\le500\)

Vậy Min A = 200 \(\Leftrightarrow300\le x\le500\)

27 tháng 9 2017

Ta có: A = | x - 500 | + | x - 300 |

A = | x - 500 | + | 300 - x |

Áp dụng: | x | + | y | \(\ge\) | x + y |

\(\Rightarrow A\ge\) | x - 500 + 300 - x | = | -200 | = 200

Vậy giá trị của A là 500

A đạt được GTNN \(\Leftrightarrow\) ( x - 500 ) ( 300 - x ) \(\ge\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-500\ge0\\300-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-500< 0\\300-x< 0\end{matrix}\right.\\\\\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge500\\x\le300\end{matrix}\right.\\\left\{{}\begin{matrix}x>500\\x>300\end{matrix}\right.\\\\\end{matrix}\right.\)

\(\Rightarrow\) x = 500

Vậy ..........

Chúc bạn hok tốt!!!Nguyen Thi Tra My

NM
28 tháng 1 2021

ta có 

\(\left|x+11\right|+\left|x+1012\right|=\left|-x-11\right|+\left|x+1012\right|\ge\left|-x-11+x+1012\right|=1001\)

\(\left|x+21\right|+\left|x+500\right|=\left|-x-21\right|+\left|x+500\right|\ge\left|-x-21+x+500\right|=479\)

Do đó 

\(|x+11|+|x+21|+|x+500|+|x+1012|+|1032|\ge1001+479+1032=2512\)

Vậy giá trị nhỏ nhất là 2512

15 tháng 10 2018

\(A=|x+100|+|x+200|+|x+300|+|x+400|+2011\)

\(\ge|x+100+x+200+x+300+x+400|+2011\)

\(=|4x+1000|+2011\)

Dấu bằng xảy ra khi và chỉ khi \(4x+1000=0\Leftrightarrow x=-250\)

=> Min A= 2011

15 tháng 10 2018

\(\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|+2011\ge\left|x+100+x+200+x+300+x+400\right|+2011=\left|4x+\left(100+200+300+400\right)\right|+2011\)\(\Rightarrow\left|x+100\right|+\left|x+200\right|+\left|x+300\right|+\left|x+400\right|\ge\left|4x+1000\right|+2011\)

\(\Rightarrow A_{Min}=2011\Leftrightarrow\left|4x+1000\right|=0\Leftrightarrow4x+1000=0\Leftrightarrow4x=-1000\Leftrightarrow x=-250\)

30 tháng 11 2019

a) \(3^{500}\)\(7^{300}\)

Ta có:

\(3^{500}=\left(3^5\right)^{100}=243^{100}.\)

\(7^{300}=\left(7^3\right)^{100}=343^{100}.\)

\(243< 343\) nên \(243^{100}< 343^{100}.\)

\(\Rightarrow3^{500}< 7^{300}.\)

Chúc bạn học tốt!

30 tháng 11 2019

a) Ta có : \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)

\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)

Mà 243 < 343

=> \(243^{100}< 343^{100}\) hay \(3^{500}< 7^{300}\)

Vậy \(3^{500}< 7^{300}\)

11 tháng 7 2019

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

11 tháng 7 2019

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

7 tháng 11 2017

a) Ta có:

\(\sqrt{x}\ge0\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}+0=\frac{1}{2}\Rightarrow P_{min}=\frac{1}{2}\) khi và chỉ khi \(\sqrt{x}=0\Rightarrow x=0\)

b) Ta có:

\(2.\sqrt{x-1}\ge0\Rightarrow7-2.\sqrt{x-1}\le7-2.0=7\Rightarrow Q_{max}=7\)khi và chỉ khi \(2.\sqrt{x-1}=0\Rightarrow\sqrt{x-1}=0\Rightarrow x-1=0\Rightarrow x=1\)

23 tháng 4 2019

a)  \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất \(=-1\)

b) \(\left(x-2\right)^2+5\ge5\)

\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy giá trị lớn nhất \(=\frac{3}{5}\)