Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(A=36-3x+\dfrac{1}{2}x^2=\dfrac{1}{2}\left(x^2-6x+72\right)\)
\(=\dfrac{1}{2}\left[\left(x^2-6x+9\right)+63\right]=\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\)
Có: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+63\ge63\)
\(\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\ge\dfrac{1}{2}\cdot63=\dfrac{63}{2}\)
Dấu ''='' xảy ra khi x = 3
Vậy \(MIN_A=\dfrac{63}{2}\Leftrightarrow x=3\)
ta có:|a|+|b|>=|a+b|
<=>(|a|+|b|)2>=|a+b|2
<=>a2+2|ab|+b2>=(a+b)2=a2+2ab+b2
<=>2|ab|>=2ab
<=>|ab|>=ab(luôn đúng với mọi a,b>=0)
áp dụng bất đẳng thức |a|+|b|>=|a+b| với mọi a;b>=0
dấu "=" xảy ra khi và chỉ khi ab>=0
=>A=|x+2|+|1-x|>=|x+2+1-x|=|3|=3
dấu "=" xảy ra khi và chỉ khi (x+2)(1-x)>=0
<=>x+2>=0 và 1-x >=0
hoặc x+2<=0 và 1-x<=0
<=>x>=-2 và x<=1 <=>-2<=x<=1
hoặc x<=-2 và x>=1 (vô lí)
vậy GTLN của A =3 khi vsf chỉ khi -2<=x<=1
1)\(x=-2\Leftrightarrow8\left(-2\right)-7+m=-2-6\Rightarrow m=15\)
2) không dõ đề
3) \(\left(x-\frac{1}{20}\right)^2=\frac{1}{5}+\frac{1}{400}=\frac{81}{400}\)\(\Leftrightarrow x=\frac{1}{20}+\frac{9}{20}=\frac{1}{2};x=\frac{1}{20}-\frac{9}{20}=-\frac{2}{5}\)
Ta có: \(\left(a-1\right)^2\ge0\)
<=> \(a^2-2a+1\ge0\)
<=> \(a^2+1\ge2a\)
=> \(\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
Tương tự ta cm được: \(\dfrac{b}{b^2+1}\le\dfrac{1}{2}\) ; \(\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
=> P=\(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\le\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
dấu bằng sảy ra khi a=b=c=1
vậy PMAX = \(\dfrac{3}{2}\) khi a=b=c=1
\(B=-3x^2+x+1\)
\(B=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(B=-3\left[\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{13}{36}\right]\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)\(\le\dfrac{13}{12}\forall x\)
\(B=\dfrac{13}{12}\Leftrightarrow-3\left(x-\dfrac{1}{6}\right)^2=0\Leftrightarrow x=\dfrac{1}{6}\)
Vậy Max B = 13/12 <=> x = 1/6