K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

5 tháng 7 2017

Ta có : 9x2 + 12x + 15

= (3x)2 + 2.3x.2 + 4 + 11

= (3x + 2)2 + 11

Mà (3x + 2)2 \(\ge0\forall x\)

Nên (3x + 2)2 + 11 \(\ge11\forall x\)

Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)

5 tháng 7 2017

Ta có : A = x2 - 4x - 6 

= x2 - 4x + 4 - 10

= (x - 2)2 - 10

Mà (x - 2)\(\ge0\forall x\)

=> (x - 2)2 - 10 \(\ge-10\forall x\)

Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2

22 tháng 7 2017

\(=\left(x^2-2.x.2-4\right)-4\)

=\(^{\left(x-2\right)^2-4}\)

vậy GTNN =-4 tại x=2

22 tháng 7 2017

mới học nên thông cảm

11 tháng 7 2018

\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)

                                    =  \(\left(2x-6\right)^2-25>=-25\)

                                       

A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)

<=> \(x=3\)

các câu còn lại tương tự

11 tháng 7 2018

TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC

\(a,A=4x^2-12x+11\)

\(A=4x^2-12x+9+2\)

\(A=\left(2x-3\right)^2+2\)

Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)

Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)

\(b,B=x^2-x+1\)

\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)

\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

\(c,C=-x^2+6x-15\)

\(C=-\left(x^2-6x+15\right)\)

\(C=-\left(x^2-6x+4+11\right)\)

\(C=-\left[\left(x-2\right)^2+11\right]\)

\(C=-\left(x-2\right)^2-11\)

Nhận xét:  \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxC=-11\Leftrightarrow x=2\)

\(d,D=\left(x-3\right)\left(1-x\right)-2\)

\(D=x-x^2-3+3x-2\)

\(D=-x^2+4x-5\)

\(D=-\left(x^2-4x+5\right)\)

\(D=-\left(x^2-4x+4+1\right)\)

\(D=-\left[\left(x-2\right)^2+1\right]\)

\(D=-\left(x-2\right)^2-1\)

Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(maxD=-1\Leftrightarrow x=2\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)a) thu gọn f(x)b) Chứng tỏ f(x) k có nghiệmBài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa...
Đọc tiếp

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

 

0

\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)

Dấu '=' xảy ra khi x=-6

\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)

Dấu '=' xảy ra khi x=2/3

\(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

4 tháng 10 2015

a,A=(2x)2-2.2x.2+22+11=(2x-2)2+11

Vì (2x-2)2luôn lớn hơn hoặc bằng 0

=>A>hoặc =0+11 hay a>hoặc =11

vậy GTNN của A là 11 khi x=1

7 tháng 8 2018

\(1;a,A=x^2+20x+101\)

\(A=x^2+2.10x+10^2+1\)

\(A=\left(x+10\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -10

Vậy Min A = 1 <=> x = -10