K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Ta có \(\frac{1}{3x-2\sqrt{6x}+5}=\frac{1}{\left(\left(\sqrt{3x}\right)^2-2.\sqrt{3x}.\sqrt{2}+2\right)+3}\)

\(=\frac{1}{\left(\sqrt{3x}-\sqrt{2}\right)^2+3}\le\frac{1}{3}\)

Vậy GTLN là \(\frac{1}{3}\)đạt được khi x = \(\frac{2}{3}\)

9 tháng 11 2016

x=2/3

19 tháng 6 2015

GTLN là \(\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\) Sách mình ghi thế nhưng không có lời giải li ke nha

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

2 tháng 6 2017

\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

      Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

          \(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)

           \(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)

            \(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)

                 Vì \(x\ge0;x\ne1\)

                              Do đó \(0< 4\sqrt{x}+8\)

   Mà \(-\left(3\sqrt{x}+2\right)< 0\)

          Vậy \(P< \frac{15}{4}\left(đpcm\right)\)

c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)

              \(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)

Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)

       Do đó \(P\le4\Leftrightarrow x=1\)

                Vậy Max P=4 khi x=1

2 tháng 6 2017

P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1 

P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2) 

P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2) 

P=3x−8+5√x(√x−1)(√x+2) 

P=3x−3√x+8√x−8(√x−1)(√x+2) 

P=(3√x+8)(√x−1)(√x−1)(√x+2) 

P=(3√x+8)(√x+2) 

b)Để P<154 thì (3√x+8)(√x+2) <154 

      Ta có:(3√x+8)(√x+2) <154 

          ⇔(3√x+8)(√x+2) −154 <0

           ⇔12√x+32−15√x−304(√x+2) <0

            ⇔−(3√x+2)4√x+8 <0

                 Vì x≥0;x≠1

                              Do đó 0<4√x+8

   Mà −(3√x+2)<0

          Vậy P<154 (đpcm)

c)Ta có:P=(3√x+8)(√x+2) 

             ⇔P=3√x+6+2(√x+2) 

             ⇔P=3(√x+2)(√x+2) +22√x+2 

              ⇔P=3+2√x+2 

Vì x≥0;x≠1⇒2√x+2 ≤1

       Do đó 

5 tháng 11 2017

P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0

=> P >= -1

Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2

Vậy Min P = -1 <=> x = -2

Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0

=> P <= 4

Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2

Vậy Max P = 4 <=> x=1/2

5 tháng 11 2017

 Câu trả lời hay nhất:  Biểu diễn P: 

P = x^2 - 4x + 5 

= x^2 - 4x + 4 + 1 

= (x^2 - 4x + 4) + 1 

= (x - 2)^2 + 1 >= 1 

Vậy giá trị nhỏ nhất đạt được của P = 1 khi: 

(x - 2)^2 = 0 

<=> x - 2 = 0 

<=> x = 2

8 tháng 3 2018

Ghi thiếu rồi bạn ơi cần đk cho x nữa nha 

8 tháng 3 2018

ko co ban oi