Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2x.\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
MIN A=\(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
Bài 1:
a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)
Dấu '=' xảy ra khi x=15
b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)
Dấu '=' xảy ra khi a=-1/2
Bài 2:
a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x=2
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có : 4 - x2 + 2x
= 5 - x2 + 2x - 1
= 5 - (x2 - 2x + 1)
= 5 - (x + 1)2
Mà : (x + 1)2 \(\ge0\forall x\)
Nên : 5 - (x + 1)2 \(\le5\forall x\)
Vây jGTLN của A là : 5 khi x = -1
Ta có ; B = 4x - x2
=> B = -x2 + 4x - 4 + 4
=> B = -(x - 4x + 4) + 4
=> B = -(x - 2)2 + 4
Mà : -(x - 2)2 \(\le0\forall x\)
Nên : B = -(x - 2)2 + 4 \(\le4\forall x\)
Vậy Bmax = 4 , dấu "=" xảy ra khi x = 2
a)A=4-x2+2x
\(\Leftrightarrow A=5-x\times x+x+x\)
\(\Leftrightarrow A=5-x\times\left(x+1\right)+\left(x+1\right)\)
\(\Leftrightarrow A=5-\left(x+1\right)^2\)
Ta có :
\(\left(x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow-\left(x+1\right)^2\le0\)
\(\Leftrightarrow5-\left(x+1\right)^2\le5\)
Dấu "=" xảy ra
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy Max A=5 \(\Leftrightarrow\)x=1