Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toán lp mấy z nhìn như toán lp 7 thì pk
ĐKXĐ : \(x\ne1\)
\(A=\frac{3n+2}{n-1}\)nguyên thì :
\(\left(3n+2\right)⋮\left(n-1\right)\)
\(\left(3n-3+5\right)⋮\left(n-1\right)\)
\(3\left(n-1\right)+5⋮\left(n-1\right)\)
Ta có : \(3\left(n-1\right)⋮\left(n-1\right)\)
\(\Rightarrow5⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)( thỏa mãn ĐKXĐ )
Vậy....
ĐKXĐ: n-1 khác 0=>n khác 1
ta có đề\(\Leftrightarrow\frac{3n-3+5}{n-1}\Leftrightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\)
\(\Leftrightarrow3+\frac{5}{n-1}\) vậy đề A là số nguyên => n-1 thuộc Ư(5)=> để A là số nguyên thì n-1={-1,-5,1,5}
bạn xét 4 trường hợp r giải là ra nha
k cho mình nha bạn
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
Ta có : \(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Dấu "=" xảy ra <=> |10,2 - 3x| = 0
=> 10,2 - 3x = 0
=> 3x = 10,2
=> x = 3,4
Vậy GTLN của F là - 14 khi x = 3,4
Ta có :
\(\left|10,2-3x\right|\ge0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)
\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)
Mà \(F=-\left|10,2-3x\right|-14\)
\(\Rightarrow F\le-14\)
\(\Leftrightarrow10,2-3x=0\Leftrightarrow3x=10,2\Leftrightarrow x=3,4\)
Vậy ..............\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)