\(F=-|10,2-3x|-14\)

giúp mik voi sap thi zoi

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Ta có : \(\left|10,2-3x\right|\ge0\forall x\)

\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)

\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)

Dấu "=" xảy ra <=> |10,2 - 3x| = 0

                         => 10,2 - 3x = 0

                         => 3x = 10,2

                         => x = 3,4

Vậy GTLN của F là - 14 khi x = 3,4

Ta có :

\(\left|10,2-3x\right|\ge0\forall x\)

\(\Rightarrow-\left|10,2-3x\right|\le0\forall x\)

\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)

Mà \(F=-\left|10,2-3x\right|-14\)

\(\Rightarrow F\le-14\)

\(\Leftrightarrow10,2-3x=0\Leftrightarrow3x=10,2\Leftrightarrow x=3,4\)

Vậy ..............\(\Rightarrow-\left|10,2-3x\right|-14\le-14\forall x\)

5 tháng 11 2021
Đây mà là toán lớp một ấy hả

toán lp mấy z nhìn như toán lp 7 thì pk

13 tháng 2 2020

ko cần bt lớp mấy nhưng cứ giải xong là đc

11 tháng 4 2019

ĐKXĐ : \(x\ne1\)

\(A=\frac{3n+2}{n-1}\)nguyên thì :

\(\left(3n+2\right)⋮\left(n-1\right)\)

\(\left(3n-3+5\right)⋮\left(n-1\right)\)

\(3\left(n-1\right)+5⋮\left(n-1\right)\)

Ta có : \(3\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)( thỏa mãn ĐKXĐ )

Vậy....

11 tháng 4 2019

ĐKXĐ: n-1 khác 0=>n khác 1

ta có đề\(\Leftrightarrow\frac{3n-3+5}{n-1}\Leftrightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\)

\(\Leftrightarrow3+\frac{5}{n-1}\) vậy đề A là số nguyên => n-1 thuộc Ư(5)=> để A là số nguyên thì n-1={-1,-5,1,5}

bạn xét 4 trường hợp r giải là ra nha

k cho mình nha bạn

7 tháng 7 2018

1 + 2 = 3 Được chưa bạn

6 tháng 7 2018

Trả lời

1 + 2 = 3

hok tốt 

==.==

27 tháng 6 2020

.....ygyygfygyufyfyufyu

20 tháng 2 2018

Số cần tìm là: 

      10 + 20 = 30

                    Đáp số: 30

20 tháng 2 2018

10+20 = 30 nhé

20 tháng 12 2018

\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)

b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)

c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\) 

sau do tinh

cau nay la toan lp 8 nha

20 tháng 12 2018

P= O/ nha

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0Câu 16. Tìm giá trị lớn nhất của biểu thức:Câu 17. So sánh các số thực sau (không dùng máy tính):Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn...
Đọc tiếp

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

Câu 27. Cho các số x, y, z dương. Chứng minh rằng:

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

3
12 tháng 10 2021

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

3 tháng 12 2021

Hả lơp 1 ????????