Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì \(\left|3x-2\right|\ge0\forall x\)
\(\Rightarrow2\left|3x-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow2\left|3x-2\right|=0\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy Amin = - 1 <=> x = 2/3
b. Vì \(\left|x-4x\right|\ge0\forall x\)
\(\Rightarrow5\left|1-4x\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow5\left|1-4x\right|=0\Leftrightarrow1-4x=0\Leftrightarrow x=\frac{1}{4}\)
Vậy Bmin = - 1 <=> x = 1/4
c. Vì \(x^2\ge0\forall x;\left|y-2\right|\ge0\forall y\)
\(\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\3\left|y-2\right|=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy Cmin = - 1 <=> x = 0 ; y = 2
d. Vì \(\left|x\right|\ge0\forall x\)\(\Rightarrow x+\left|x\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x bé hơn hoặc bằng 0
Vậy Dmin = 0 <=> x bé hơn hoặc bằng 0
e.
+) Nếu x > hoặc bằng 7
=> E = | x - 7 | + 6 - x = x - 7 + 6 - x = -1
Vậy x > hoặc bằng 7 thì E có một giá trị duy nhất là -1
+) Nếu 0 < x < 7
=> E = | x - 7 | + 6 - x = - x + 7 + 6 - x = - 2x + 13 ( nhỏ nhất bằng 1 <=> x = 6 )
+) Nếu x bé hơn hoặc bằng 0
=> E = | x - 7 | + 6 - x = - x + 7 + 6 + x = 13
Vậy Emin = -1 <=> x lớn hơn hoặc bằng 7
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
1a, 15-/2x-1/=8
=>/2x-1/=15-8 =7
=> 2x-1 =8 hoặc 2x-1=-8
=>2x =8+1=9 hoặc 2x=-8+1 =-7
=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5
vậy..........
1b, /x+2/ +/5-2y/ =0
=> /x+2/=0và /5-2y/ =0
=> x=2 và 2y =5
=>x=2 và y=2,5
vậy....................
Bài 1:
a) \(A=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
\(A=-1\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy \(A_{min}=-1\Leftrightarrow x=2\)
b) \(B=\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có: \(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\forall x;y}\)
\(B=10\Leftrightarrow\hept{\begin{cases}\left(x^2-9\right)^2=0\\\left|y-2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}}\)
Vậy \(B_{min}=10\Leftrightarrow x=\pm3;y=2\)
Bài 2: \(C=\frac{3}{\left(x-2\right)^2}+5\)
Ta có: \(\frac{3}{\left(x-2\right)^2}\ge0\forall x\)
\(\Rightarrow\frac{3}{\left(x-2\right)^2}+5\ge5\forall x\)
\(\Rightarrow\) C không có giá trị lớn nhất
Vậy C không có giá trị lớn nhất
d) \(D=-10-\left(x-3\right)^2-\left|y-5\right|\)
Ta có: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x-3\right)^2\le0\forall x\\-\left|y-5\right|\le0\forall y\end{cases}}\Rightarrow-\left(x-3\right)^2-\left|y-5\right|-10\ge-10\forall x;y\)
\(D=-10\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left|y-5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}}\)
Vậy \(D_{m\text{ax}}=-10\Leftrightarrow x=3;y=5\)
B1:a,\(\left(x-2\right)^2-1\ge0-1=-1\)
\(\Rightarrow\)GTNN của A là -1 đạt được khi x=2
b,\(\left(x^2-9\right)^2+\left|y-2\right|+10\ge0+0+10=10\)
\(\Rightarrow\)GTNN của B là 10 khi \(\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\)
B2:
a,\(\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{0+5}=\frac{3}{5}\)
\(\Rightarrow\)GTLN của C là \(\frac{3}{5}\) đạt được khi x=2
b,\(-10-\left(x-3\right)^2-\left|y-5\right|\le-10-0-0=-10\)
\(\Rightarrow\)GTLN của D là -10 đạt được khi \(\hept{\begin{cases}x=3\\y=5\end{cases}}\)
a)\(A=x^2-1\)
\(Nx:\)\(x^2\ge0\)
\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)
b) \(B=x^2-2x+3\)
\(=x\left(x-2\right)+3\)
\(Nx:x\left(x-2\right)\ge0\)
\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)
c) \(C=\left|2x+1\right|-5\)
\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)
d) \(D=3x^2+6x-7\)
\(=3\left(x^2+2x\right)-7\)
\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)
\(D_{Min}=-8\Leftrightarrow x=-1\)
1)
Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y
=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)
Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0 <=> x = -3 và y = -1
=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5 tại x = -3 và y = -1
=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1
2) \(M=2x^4+3x^2y^2+y^4+y^2\)
\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)
\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)
\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)