Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Max \(=3\)
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a)
Vì \(\left|x-3,5\right|\ge0\forall x\)
=>\(-\left|x-3,5\right|\le0\forall x\)
=>\(0,5-\left|x-3,5\right|\le0,5\forall x\)
Vậy GTLN của biểu thức A là 0,5
Dấu "=" xảy ra khi \(\left|x-3,5\right|=0\)
=>\(x-3,5=0\)
\(x=3,5\)
Vậy biểu thức A đạt giá trị lớn nhất là 0,5 khi x=3,5
b)
Vì \(\left|1,4-x\right|\ge0\forall x\)
=>\(-\left|1,4-x\right|\le0\forall x\)
=>\(-\left|1,4-x\right|-2\le-2\forall x\)
Vậy GTLN của biểu thức B là -2
Dấu "=" xảy ra khi \(\left|1,4-x\right|=0\)
=>\(1,4-x=0\)
\(x=1,4\)
Vậy biểu thức B đạt giá trị lớn nhất là -2 khi x=1,4
vì | x + 3 | \(\ge\)0 \(\forall\)x
\(\Rightarrow\)P = 18 - | x + 3 | \(\le\)18
Vậy Pmax = 18 khi | x + 3 | = 0 hay x = -3