Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
Ta có \(\left|x-2015\right|\ge0\)
\(\Rightarrow\left|x-2015\right|+2\ge2\)
\(\Rightarrow\frac{2016}{\left|x-2015\right|+2}\le\frac{2016}{2}=1008\)
\(\Rightarrow GTLN\)của biểu thức là 1008 khi \(\left|x-2015\right|=0\Rightarrow x-2015=0\Rightarrow x=2015\)
Vậy GTLN của \(\frac{2016}{\left|x-2015\right|+2}\)là 1008 khi x=2015
a cx k bt vt e ah
e xét 2 trường hợp nhé
một là x+2/5 = 2x-1/3
hai là x+2/5 = -(2x=1/3)
chúc e học tốt
Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)
Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)
\(\left|x-2,5\right|\ge0.Với\forall x\in R\)
\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)
Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)
Ta có:P=(/x-3/+2)^2+(y+3)+2017
Ta thấy:/x-3/\(\ge\)0
\(\Rightarrow\)/x-3/+2\(\ge\)2
\(\Rightarrow\)(/x-3 +2)\(^2\)\(\ge\)4
y\(\ge\)0
\(\Rightarrow\)y+3\(\ge\)3
Do đó (/x-3/+2)\(^2\)\(\ge\)4+3+2017
=2024
Vậy giá trị nhỏ nhất của P là 2024\(\Leftrightarrow\)+, /x-3/=0
\(\Rightarrow\)x-3=0
x =0+3
x =3
+, y+3=0
y =0-3
y =-3
mày đặt câu hỏi đã đời xong mày lại trả lời thì hỏi làm gì chứ
+)Với \(x\le2016\)
=>\(A=\left|x-2016\right|+x-1=2016-x+x-1=2015\)
+)Với x>2016
=>\(A=\left|x-2016\right|+x-1=x-2016+x-1=2x-2017>2015\)
So sánh 2 trường hợp ta thấy A đạt giá trị nhỏ nhất là 2015 khi \(x\le2016\)