K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(M=\frac{2x+x^2-x^2+2-1}{x^2+2}=\frac{\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}.\)

có \(-\left(x-1\right)^2\le0\)

\(x^2+2>0\) 

Suy ra

\(-\frac{\left(x-1\right)^2}{x^2+2}\le0\)

vậy 

\(M=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)

dấu = xảy ra khi  \(\left(x-1\right)^2=0\Leftrightarrow x=1.\)

21 tháng 4 2018

kb với mình đi

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

4 tháng 7 2020

Bài làm:

#Tìm Max của biểu thức:

\(A=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}-\frac{\left(2x+1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow A\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy \(Max\left(A\right)=4\Leftrightarrow x=-\frac{1}{2}\)

#Tìm Max và Min của B:

Tìm Min

\(B=\frac{2x}{x^2+1}=\frac{\left(x^2+2x+1\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)\Rightarrow}\frac{\left(x+1\right)^2}{x^2+1}\ge0\left(\forall x\right)\)

\(\Rightarrow B\ge-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x+1\right)^2\ge0\Rightarrow x=-1\)

Vậy \(Min\left(B\right)=-1\Leftrightarrow x=-1\)

Tìm Max

\(B=\frac{2x}{x^2+1}=\frac{x^2+1-\left(x^2-2x+1\right)}{x^2+1}=1-\frac{\left(x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\Rightarrow-\frac{\left(x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

\(\Rightarrow B\le1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(Max\left(B\right)=1\Leftrightarrow x=1\)

Sao dạo này nhìu bạn đăng mấy câu như vậy lên thế nhỉ?

16 tháng 9 2019

giải

\(M=\frac{2x+1+x^2+2-x^2-2}{x^2+2}=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}\)

\(M=\frac{\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\)

M lớn nhất khi \(\frac{\left(x-1\right)^2}{x^2+2}\) nhỏ nhất 

Vì  \(\left(x-1\right)^2\ge0\forall x\) và         \(\left(x^2+2\right)>0\forall x\)nên \(\frac{\left(x-1\right)^2}{x^2+2}\) nhỏ nhất khi \(\left(x-1\right)^2=0\)

Dấu " = " xảy ra khi \(x-1=0\Leftrightarrow x=1\) 

Vậy \(M_{max}=1\) khi \(x=1\)

Chúc bạn học tốt !!!

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

9 tháng 1 2017

ta có 

P = 2x^2 - 6x 

= 2( x^2 - 3x + 9/4) - 9/4

= 2( x-3/2)^2 - 9/4 

nhận xét 2(x-3/2)^2 >=0 

=> 2(x-3/2)^2 - 9/4 >=-9/4

dấu = xảy ra khi và chỉ khi 

x- 3/2 = 0 

=> x= 3/2

9 tháng 1 2017

4x - x^2 + 3 

= -x^2 + 4x - 4 +7

= -(x^2 - 4x + 4) + 7 

= -(x-2)^2 + 7 

nhận xét -(x-2)^2 <=0 

=> -(x-2)^2 + 7 <=7 

đấu = xảy ra khi và chỉ khi 

x-2 = 0 

=> x= 2

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

20 tháng 8 2017

1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)

\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)

\(\Rightarrow a^3+\frac{1}{a^3}=52\)

Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)

\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)

2) \(A=2xy-x^2-4y^2+2x+10y-2000\)

\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)

\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs