Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 Câu :V chia ra phần 1 2 câu phần 2 3 câu nhé ;v
Câu 1 : Theo đề ta có : \(\left(x+1\right)^{2014}+\left(y-1\right)^{2016}=0\)
vì \(\left\{{}\begin{matrix}\left(x+1\right)^{2014}\ge0\forall x\\\left(y-1\right)^{2016}\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)=0\\\left(y-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy GTBT \(3x^7-5y^6+1=3\cdot\left(-1\right)^7-5\cdot1^6+1=-7\)
Câu 2 : Để \(T\left(x\right)=x^{2014}-x=0\)
\(\Leftrightarrow x^{2014}=x\)
mà \(x^{2014}\ge0\forall x\rightarrow x\ge0\) (vì \(x^{2014}=x\))
Vậy x nhận hai giá trị là x = \(\left(0;1\right)\) thì GTBT T(x) bằng 0.
thay x=2015 vao da thuc ta dc:
2015^10 - 2014 x 2015^9 - 2014 x 2015^8 -....- 2014 x 2015-2014
=2015^9 x(2015-2014) -2014 x 2015^8 -...- 2014 x2015 - 2014
=2015^9 - 2014 x 2015^8 -...- 2014 x 2015 - 2014
=2015^8-....- 2014 x2015 - 2014
=2015 - 2014 =1
(tu dong thu 2, x co nghia la dau nhan nhe ban)
Đặt : A=x^2+2014x
Ta có: A = x^2+2014x
=>A= x(×+2014)
Để A có gtri dương=>x và ( x+2014) cùng dấu
Xét x và x+2014 có gtri dương
=>x lớn hơn 0 (1)
Xét x và x+2014 có gtri âm
=>x bé hơn -2014 (2)
Từ (1) và (2) ta suy ra
Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -2014
Chắc thế =))
- Xét x^8 - 2014x^7 tại x= 2013
x^8 - 2014x^7 = 2013^8-2014. 2013^7 = 2013^7. ( 2013-2014) = - 2013^7
- Tính tiếp : -2013^7 + 2014. 2013^6 = 2013^6 ( -2013+2014 ) = 2013^6
Cứ như vậy đến -2014. 2013 = - 2013
Cuối cùng KQ f(2013) = -2013+2020=7
2013^8 - 2014. 2013^7 = 2013^7 ( 2013-2014 ) = - 2013^7
- 2013^7 + 2014. 2013^6 = 2013^6 ( -2013+2014) = 2013^6
..............................................................................................
..............................................................................................
-2013 + 2020 = 7
Vậy f(2013)= 7